Multidrug-resistant Klebsiella pneumoniae is responsible for an increasing proportion of nosocomial infections, and emerging hypervirulent K. pneumoniae clones now cause severe community-acquired infections in otherwise healthy individuals. These bacteria are adept at circumventing immune defenses, and most survive and grow in serum; their capacity to avoid C′-mediated destruction is correlated with their invasive potential. Killing of Gram-negative bacteria occurs following activation of the C′ cascades and stable deposition of C5b-9 MACs onto the OM. For Klebsiella, studies with mutants and conjugants have invoked capsules, lipopolysaccharide O-side chains, and OM proteins as determinants of C′ resistance, although the precise roles of the macromolecules are unclear. In this study, we sequenced 164 Klebsiella isolates with different C′ susceptibilities to identify genes involved in resistance. We conclude that no single OM constituent can account for resistance, which is likely to depend on biophysical properties of the target bilayer.
Background: The association between genetic variants and cisplatin nephrotoxicity has been studied previously using candidate gene approach but consistent results are lacking. We aimed to improve our understanding of genetic risk factors for cisplatin nephrotoxicity by identifying previously unreported genetic associations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.