Fc receptor-like 5 (FCRL5) regulates BCR signaling and has been reported to bind aggregated IgG. Using surface plasmon resonance, we analyzed the interaction of native IgG samples with FCRL5, revealing a complex binding mechanism, where isotype is just one factor. FCRL5 bound IgG1 and IgG4 with approximately 1 μM KD, while the interaction with IgG3 was a magnitude weaker. However, IgG2 samples displayed a wide range of affinities, indicating that additional factors affect binding. We used a panel of 19 anti-FCRL5 mAbs with defined reactivity to identify domains involved in ligand binding. Six mAbs blocked IgG binding, indicating critical roles of FCRL5 domains 1 and 3, as well as epitopes at the domain 1/2 and domain 2/3 boundaries. We found that only glycosylated IgG containing both Fab arms and the Fc region bound with high affinity. Furthermore, the presence of sialic acid in the IgG carbohydrate altered FCRL5 binding. The interaction of IgG and FCRL5 consisted of two kinetic components, suggesting a complex binding mechanism. We established that the IgG-Fc and IgG-F(ab’)2 fragments bind FCRL5 independently but with low affinity, revealing the mechanism behind the two-step binding of whole IgG. This complex binding mechanism is distinct from that of Fc-receptors, which bind through the Fc. We propose that FCRL5 is a new type of receptor that recognizes intact IgG, possibly enabling B cells to sense immunoglobulin quality. Recognition of undamaged IgG molecules by FCRL5 could allow B cells to engage recently produced antibodies.
The biological roles of B cell membrane proteins in the FCRL family are enigmatic. FCRL proteins, including FCRL5, were shown to modulate early BCR signaling, although the subsequent, functional consequences of receptor engagement are poorly understood. We found that FCRL5 surface protein itself was induced temporarily upon BCR stimulation of human, naive B cells, indicating precise control over timing of FCRL5 engagement. Cross-linking of FCRL5 on cells induced to express FCRL5 enhanced B cell proliferation significantly. This enhancement required costimulation of the BCR and TLR9, two signals required for optimal proliferation of naive B cells, whereas T cell help in the form of anti-CD40 and IL-2 was dispensable. In addition, we found that FCRL5 stimulation generated a high proportion of cells displaying surface IgG and IgA. Optimal development of cells expressing switched isotypes required T cell help, in addition to stimuli found necessary for enhanced proliferation. Surprisingly, cells that developed upon FCRL5 stimulation simultaneously displayed surface IgM, IgG, and IgA. Cells expressing multiple Ig isotypes were described in hairy cell leukemia, a disease in which FCRL5 is overexpressed. Enhanced proliferation and downstream isotype expression upon FCRL5 stimulation could reflect a physiological role for FCRL5 in the expansion and development of antigen-primed B cells. In addition, FCRL5 may promote growth of malignant cells in hairy cell leukemia and other FCRL5-expressing tumors.
Atypical memory B cells accumulate in chronic infections and autoimmune conditions, and commonly express FCRL4 and FCRL5, respective IgA and IgG receptors. We characterized memory cells from tonsils based on both FCRL4 and FCRL5 expression, defining three subsets with distinct surface proteins and gene expression. Atypical FCRL4+FCRL5+ memory cells had the most discrete surface protein expression and were enriched in cell adhesion pathways, consistent with functioning as tissue-resident cells. Atypical FCRL4-FCRL5+ memory cells expressed transcription factors and immunoglobulin genes that suggest poised differentiation into plasma cells. Accordingly, the FCRL4-FCRL5+ memory subset was enriched in pathways responding to endoplasmic reticulum stress and IFN-γ. We reconstructed ongoing B cell responses as lineage trees, providing crucial in vivo developmental context. Each memory subset typically maintained its lineage, denoting mechanisms enforcing their phenotypes. Classical FCRL4-FCRL5- memory cells were infrequently detected in lineage trees, suggesting the majority were in a quiescent state. FCRL4-FCRL5+ cells were the most represented memory subset in lineage trees, indicating robust participation in ongoing responses. Together these differences suggest FCRL4 and FCRL5 are unlikely to be passive markers but rather active drivers of human memory B cell development and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.