Spike protein (S protein) is the virus “key” to infect cells and is able to strongly bind to the human angiotensin-converting enzyme2 (ACE2), as has been reported. In fact, Spike structure and function is known to be highly important for cell infection as well as for entering the brain. Growing evidence indicates that different types of coronaviruses not only affect the respiratory system, but they might also invade the central nervous system (CNS). However, very little evidence has been so far reported on the presence of COVID-19 in the brain, and the potential exploitation, by this virus, of the lung to brain axis to reach neurons has not been completely understood. In this Article, we assessed the SARS-CoV and SARS-CoV-2 Spike protein sequence, structure, and electrostatic potential using computational approaches. Our results showed that the S proteins of SARS-CoV-2 and SARS-CoV are highly similar, sharing a sequence identity of 77%. In addition, we found that the SARS-CoV-2 S protein is slightly more positively charged than that of SARS-CoV since it contains four more positively charged residues and five less negatively charged residues which may lead to an increased affinity to bind to negatively charged regions of other molecules through nonspecific and specific interactions. Analysis the S protein binding to the host ACE2 receptor showed a 30% higher binding energy for SARS-CoV-2 than for the SARS-CoV S protein. These results might be useful for understanding the mechanism of cell entry, blood-brain barrier crossing, and clinical features related to the CNS infection by SARS-CoV-2.
Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb Curcuma longa, has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it’s interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism. Preclinical data obtained from animal models and phase I clinical studies done in human volunteers confirmed a small amount of intestinal absorption, hepatic first pass effect, and some degree of intestinal metabolism, might explain its poor systemic availability when it is given via the oral route. During the last decade, researchers have attempted with new pharmaceutical methods such as nanoparticles, liposomes, micelles, solid dispersions, emulsions, and microspheres to improve the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with a varying range of enhanced bioavailability. This manuscript critically reviews the available scientific evidence on the basic and clinical effects and molecular targets of curcumin. We also discuss its pharmacokinetic and problems for marketing curcumin as a drug.
Mice exposed to continuous light undergo functional and histological changes that mimic those of human Polycystic Ovary Syndrome (PCOS). We herein induced the syndrome by exposing 30‐day‐old females to 10 weeks of permanent light. Ovarian morphology and histology, as well as reproductive parameters (time of observed pregnancy/delivery) were investigated. Ovaries of PCOS‐modeled mice showed lack of tertiary follicles and corpora lutea, altered ovarian architecture, and increased thickness of the theca layer. When mice were returned to a normal light‐dark regimen for 10 days, a slight, spontaneous improvement occurred, whereas a quick and almost complete recovery from PCOS signs and symptoms was obtained by treating animals with a daily supplementation of 420 mg/kg myo‐inositol and D‐chiro‐inositol (MyoIns/DCIns) in a 40:1 molar ratio. Namely, ovaries from mice treated by this protocol recovered normal histological features and a proper ratio of theca/granulosa cell layer thickness (TGR), suggesting that the androgenic phenotype was efficiently reversed. Indeed, we identified TGR as a useful index of PCOS, as its increase in PCOS‐modeled mice correlated linearly with reduced reproductive capability ( r = 0.75, p < 0.0001). Mice treated with a 40:1 formula regained low TGR values and faster recovery of their fertility, with a physiological delivery time after mating. On the other hand, a higher D‐chiro‐inositol treatment formula, such as MyoIns versus DCIns 5:1, was ineffective or even had a negative effect on clinical‐pathological outcomes.
The Niemann-Pick type C1 (NPC1) disease is a neurodegenerative lysosomal storage disorder due to mutations in the NPC1 gene, encoding a transmembrane protein related to the Sonic hedgehog (Shh) receptor, Patched, and involved in intracellular trafficking of cholesterol. We have recently found that the proliferation of cerebellar granule neuron precursors is significantly reduced in Npc1-/- mice due to the downregulation of Shh expression. This finding prompted us to analyze the formation of the primary cilium, a non-motile organelle that is specialized for Shh signal transduction and responsible, when defective, for several human genetic disorders. In this study, we show that the expression and subcellular localization of Shh effectors and ciliary proteins are severely disturbed in Npc1-deficient mice. The dysregulation of Shh signaling is associated with a shortening of the primary cilium length and with a reduction of the fraction of ciliated cells in Npc1-deficient mouse brains and the human fibroblasts of NPC1 patients. These defects are prevented by treatment with 2-hydroxypropyl-β-cyclodextrin, a promising therapy currently under clinical investigation. Our findings indicate that defective Shh signaling is responsible for abnormal morphogenesis of the cerebellum of Npc1-deficient mice and show, for the first time, that the formation of the primary cilium is altered in NPC1 disease.
Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disorder caused by defective intracellular trafficking of exogenous cholesterol. Purkinje cell (PC) degeneration is the main sign of cerebellar dysfunction in both NPC1 patients and animal models. It has been recently shown that a significant decrease in Sonic hedgehog (Shh) expression reduces the proliferative potential of granule neuron precursors in the developing cerebellum of Npc1−/− mice. Pursuing the hypothesis that this developmental defect translates into functional impairments, we have assayed Npc1-deficient pups belonging to the milder mutant mouse strain Npc1nmf164 for sensorimotor development from postnatal day (PN) 3 to PN21. Npc1nmf164/ Npc1nmf164 pups displayed a 2.5-day delay in the acquisition of complex motor abilities compared to wild-type (wt) littermates, in agreement with the significant disorganization of cerebellar cortex cytoarchitecture observed between PN11 and PN15. Compared to wt, Npc1nmf164 homozygous mice exhibited a poorer morphological differentiation of Bergmann glia (BG), as indicated by thicker radial shafts and less elaborate reticular pattern of lateral processes. Also BG functional development was defective, as indicated by the significant reduction in GLAST and Glutamine synthetase expression. A reduced VGluT2 and GAD65 expression also indicated an overall derangement of the glutamatergic/GABAergic stimulation that PCs receive by climbing/parallel fibers and basket/stellate cells, respectively. Lastly, Npc1-deficiency also affected oligodendrocyte differentiation as indicated by the strong reduction of myelin basic protein. Two sequential 2-hydroxypropyl-β-cyclodextrin administrations at PN4 and PN7 counteract these defects, partially preventing functional impairment of BG and fully restoring the normal patterns of glutamatergic/GABAergic stimulation to PCs.These findings indicate that in Npc1nmf164 homozygous mice the derangement of synaptic connectivity and dysmyelination during cerebellar morphogenesis largely anticipate motor deficits that are typically observed during adulthood.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-016-0370-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.