In this work, we investigate the dynamical and geometric properties of weak solenoids, as part of the development of a "calculus of group chains" associated to Cantor minimal actions. The study of the properties of group chains was initiated in the works of McCord [23] and Fokkink and Oversteegen [14], to study the problem of determining which weak solenoids are homogeneous continua. We develop an alternative condition for the homogeneity in terms of the Ellis semigroup of the action, then investigate the relationship between non-homogeneity of a weak solenoid and its discriminant invariant, which we introduce in this work. A key part of our study is the construction of new examples that illustrate various subtle properties of group chains that correspond to geometric properties of nonhomogeneous weak solenoids.
Abstract. A matchbox manifold is a foliated space with totally disconnected transversals, and an equicontinuous matchbox manifold is the generalization of Riemannian foliations for smooth manifolds in this context. In this paper, we develop the Molino theory for all equicontinuous matchbox manifolds. Our work extends the Molino theory developed in the work ofÁlvarez López and Moreira Galicia which required the hypothesis that the holonomy actions for these spaces satisfy the strong quasi-analyticity condition. The methods of this paper are based on the authors' previous works on the structure of weak solenoids, and provide many new properties of the Molino theory for the case of totally disconnected transversals, and examples to illustrate these properties. In particular, we show that the Molino space need not be uniquely well-defined, unless the global holonomy dynamical system is stable, a notion defined in this work. We show that examples in the literature for the theory of weak solenoids provide examples for which the strong quasi-analytic condition fails. Of particular interest is a new class of examples of equicontinuous minimal Cantor actions by finitely generated groups, whose construction relies on a result of Lubotzky. These examples have non-trivial Molino sequences, and other interesting properties.
Abstract. A matchbox manifold with one-dimensional leaves which has equicontinuous holonomy dynamics must be a homogeneous space, and so must be homeomorphic to a classical Vietoris solenoid. In this work, we consider the problem, what can be said about a matchbox manifold with equicontinuous holonomy dynamics, and all of whose leaves have at most polynomial growth type? We show that such a space must have a finite covering for which the global holonomy group of its foliation is nilpotent. As a consequence, we show that if the growth type of the leaves is polynomial of degree at most 3, then there exists a finite covering which is homogeneous. If the growth type of the leaves is polynomial of degree at least 4, then there are additional obstructions to homogeneity, which arise from the structure of nilpotent groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.