The p38 MAPK cascade is a key signaling pathway linked to a multitude of physiological functions and of central importance in inflammatory and autoimmune diseases. Although studied extensively, little is known about how conformation-specific inhibitors alter signaling outcomes. Here, we have explored the highly dynamic back pocket of p38 MAPK with allosteric urea fragments. However, screening against known off-targets showed that these fragments maintained the selectivity issues of their parent compound BIRB-796, while combination with the hinge binding motif of VPC-00628 greatly enhanced inhibitor selectivity. Further efforts focused therefore on the exploration of the αC-out pocket of p38 MAPK, yielding compound 137 as a highly selective type-II inhibitor. Even though 137 is structurally related to a recent p38 type-II chemical probe, SR-318, the data presented here provide valuable insights into backpocket interactions that are not addressed in SR-318, and it provides an alternative chemical tool with good cellular activity targeting also the p38 back pocket.
Microwave irradiation of 2-halobenzonitriles and methyl thioglycolate in the presence of triethylamine in DMSO at 130 °C provides rapid access to 3-aminobenzo[b]thiophenes in 58-96% yield. This transformation has been applied in the synthesis of the thieno[2,3-b]pyridine core motif of LIMK1 inhibitors, the benzo[4,5]thieno[3,2-e][1,4]diazepin-5(2H)-one scaffold of MK2 inhibitors and a benzo[4,5]thieno[3,2-d]pyrimidin-4-one inhibitor of the PIM kinases.
Microwave-assisted synthesis of the pyrazolyl ketone p38 MAPK inhibitor RO3201195 in 7 steps and 15% overall yield, and the comparison of its effect upon the proliferation of Werner Syndrome cells with a library of pyrazolyl ketones, strengthens the evidence that p38 MAPK inhibition plays a critical role in modulating premature cellular senescence in this progeroid syndrome and the reversal of accelerated ageing observed in vitro on treatment with SB203580.
Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.