Pseudomonas pseudoalcaligenes CECT5344 is a Gram-negative bacterium able to tolerate cyanide and to use it as the sole nitrogen source. We report here the first draft of the whole genome sequence of a P. pseudoalcaligenes strain that assimilates cyanide. Three aspects are specially emphasized in this manuscript. First, some generalities of the genome are shown and discussed in the context of other Pseudomonadaceae genomes, including genome size, G + C content, core genome and singletons among other features. Second, the genome is analysed in the context of cyanide metabolism, describing genes probably involved in cyanide assimilation, like those encoding nitrilases, and genes related to cyanide resistance, like the cio genes encoding the cyanide insensitive oxidases. Finally, the presence of genes probably involved in other processes with a great biotechnological potential like production of bioplastics and biodegradation of pollutants also is discussed.
A proteomic approach was used to identify several proteins induced by cyanide in the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344, two of them, NitB and NitG, encoded by genes that belong to the nit1C gene cluster. The predicted products of the nit1C gene cluster are a Fis-like σ(54) -dependent transcriptional activator (NitA), a nitrilase (NitC), an S-adenosylmethionine superfamily member (NitD), an N-acyltransferase superfamily member (NitE), a trifunctional polypeptide of the AIRS/GARS family (NitF), an NADH-dependent oxidoreductase (NitH) and two hypothetical proteins of unknown function (NitB and NitG). RT-PCR analysis suggested that nitBCDEFGH genes were co-transcribed, whereas the regulatory nitA gene was divergently transcribed. Real-time RT-PCR revealed that expression of the nitBCDEFGH genes was induced by cyanide and repressed by ammonium. The P. pseudoalcaligenes CECT5344 nit1C gene cluster was found to be involved in assimilation of free and organic cyanides (nitriles) as deduced for the inability to grow with cyanides showed by the NitA, NitB and NitC mutant strains. The wild-type strain CECT5344 showed a nitrilase activity that allows growth on cyanide or hydroxynitriles. The NitB and NitC mutants only presented low basal levels of nitrilase activity that were not enough to support growth on either free cyanide or aliphatic nitriles, suggesting that nitrilase NitC is specific and essential for cyanide and aliphatic nitriles assimilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.