Transforming growth factor (TGF)-beta is a central stimulus of the events leading to chronic progressive kidney disease, having been implicated in the regulation of cell proliferation, hypertrophy, apoptosis and fibrogenesis. The fact that it mediates these varied events suggests that multiple mechanisms play a role in determining the outcome of TGF-beta signaling. Regulation begins with the availability and activation of TGF-beta and continues through receptor expression and localization, control of the TGF-beta family-specific Smad signaling proteins, and interaction of the Smads with multiple signaling pathways extending into the nucleus. Studies of these mechanisms in kidney cells and in whole-animal experimental models, reviewed here, are beginning to provide insight into the role of TGF-beta in the pathogenesis of renal dysfunction and its potential treatment.
By inducing epithelial-to-mesenchymal transition (EMT), transforming growth factor- (TGF-) promotes cancer progression and fibrosis. Here we show that expression of the TGF- receptor-associated protein, SARA (Smad anchor for receptor activation), decreases within 72 h of exposure to TGF- and that this decline is both required and sufficient for the induction of several markers of EMT. It has been suggested recently that expression of the TGF- signaling mediators, Smad2 and Smad3, may have different functional effects, with Smad2 loss being more permissive for EMT progression. We find that the loss of SARA expression leads to a concomitant decrease in Smad2 expression and a disruption of Smad2-specific transcriptional activity, with no effect on Smad3 signaling or expression. Further, the effects of inducing the loss of Smad2 mimic those of the loss of SARA, enhancing expression of the EMT marker, smooth muscle ␣-actin. Smad2 mRNA levels are not affected by the loss of SARA. However, the ubiquitination of Smad2 is increased in SARA-deficient cells. We therefore examined the E3 ubiquitin ligase Smurf2 and found that although Smurf2 expression was unaltered in SARA-deficient cells, the interaction of Smad2 and Smurf2 was enhanced. These results describe a significant role for SARA in regulating cell phenotype and suggest that its effects are mediated through modification of the balance between Smad2 and Smad3 signaling. In part, this is achieved by enhancing the association of Smad2 with Smurf2, leading to Smad2 degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.