This study presents the first regional analysis of cirques on Vestfirðir, NW Iceland, using a Geographical Information System (GIS). The length, width, elevation of cirque-floor, latitude and the distance to the modern coastline (both ocean and fjord coastlines) of cirques were quantified using ArcGIS. The topographical analysis revealed a total of 100 cirques on western and northern Vestfirðir. Several additional cirques are present, but they had poorly defined toewalls, making the cirque-floor difficult to identify. Mean cirque length is 515 m and mean cirque width is 752 m. The modal orientation of the aspect of cirques is northeast, with a strong secondary mode to the northwest. Cirques at low elevations are more abundant close to the ocean, whereas cirques further from the ocean are present at high elevations. Three techniques were used to reconstruct past equilibrium-line altitudes (ELAs) of cirque glaciers: the cirque-floor method, the altitude-ratio method and the accumulation-area ratio method. The largest range of past ELAs is generated from the cirque-floor method with values from 40 up to 730 m. Mean past ELA values range from ∼395 to 423 m depending on the method used to reconstruct former ELAs. A strong positive relationship is observed between past ELA values and distance to the ocean demonstrating the importance of access to a moisture source for glacier survival. This relationship is stronger than the relationship between former ELAs and latitude. Based on the small size of cirque glaciers, it is likely that even minor fluctuations in the Irminger Current and the East Greenland Current influence cirque glaciation on Vestfirðir.
This study is a quantitative analysis of cirques in three regions of Iceland: Tröllaskagi, the East Fjords and Vestfirðir. Using Google Earth and the National Land Survey of Iceland Map Viewer, we identified 347 new cirques on Tröllaskagi and the East Fjords region, and combined these data with 100 cirques previously identified on Vestfirðir. We used ArcGIS to measure length, width, aspect, latitude and distance to coastline of each cirque. Palaeo‐equilibrium‐line altitudes (palaeo‐ELAs) of palaeo‐cirque glaciers were calculated using the altitude‐ratio method, cirque‐floor method and minimum‐point method. The mean palaeo‐ELA values in Tröllaskagi, the East Fjords and Vestfirðir are 788, 643 and 408 m a.s.l, respectively. Interpolation maps of palaeo‐ELAs demonstrate a positive relationship between palaeo‐ELA and distance to coastline. A positive relationship between palaeo‐ELA and latitude is observed on Vestfirðir, a negative relationship is observed on Tröllaskagi and no statistically significant relationship is present on the East Fjords. The modal orientation of cirques on Tröllaskagi and Vestfirðir is northeast, while orientation of cirques in the East Fjords is north. Palaeo‐wind reconstructions for the LGM show that modal aspect is aligned with the prevailing north‐northeast wind directions, although aspect measurements demonstrate wide dispersion. Cirque length is similar on Tröllaskagi and the East Fjords, but cirques are approximately 200 m shorter in Vestfirðir. Cirque widths are similar in all three regions. Comparisons with a global data set show that cirques in Iceland are smaller and more circular than cirques in other regions of the world. Similar to glaciers in Norway and Kamchatka, our results demonstrate that access to a moisture source is a key parameter in determining palaeo‐ELAs in Iceland. Temperatures interpreted from palaeo‐ELA depressions suggest that these cirques may have been glaciated as recently as the Little Ice Age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.