ABSTRACT:The disposition and metabolism of isopropyl N-[(2S)-7-cyano-4-(2-pyridylmethyl)-2,3-dihydro-1H-cyclopenta[b]indol-2-yl]carbamate (LY2452473; a selective androgen receptor modulator) in humans was characterized after a single 15-mg (100 Ci) oral dose of [ 14 C]LY2452473 to six healthy male subjects. LY2452473 was absorbed rapidly (time to reach maximum plasma concentration for both LY2452473 and total radioactivity was 2-3 h) and cleared slowly (plasma terminal t 1/2 of 27 h for LY2452473 and 51 h for the total radioactivity). LY2452473 and metabolites S5 (acetylamine) and S12 (hydroxylation on the cyclopentene) were major circulating entities in plasma, accounting for approximately 42, 21, and 35% of the total radioactivity exposure, respectively, as calculated from relative area under the concentration versus time curves from zero to 48 h derived from the plasma radiochromatograms. The radioactive dose was almost completely recovered after 312 h with 47.9% of the dose eliminated in urine and 46.6% in feces. Minimal LY2452473 was detected in excreta, indicating that metabolic clearance was the main route of elimination. Multiple metabolic pathways were observed with no single metabolic pathway accounting for more than 30% of the dose in excreta. Metabolite S10 (a diol across the cyclopenta-indole linkage) was the largest excretory metabolite (approximately 14% of the dose). S10 displayed interesting chemical and chromatographic properties, undergoing conversion to the corresponding epoxide under acidic conditions and conversion back to the diol under neutral conditions. An in vitro phenotyping approach indicated that CYP3A4 was the largest contributor to LY2452473 depletion.
The disposition and metabolism of a Chk-1 inhibitor (LY2603618) was characterized following a 1-h intravenous administration of a single 250-mg dose of [14C]LY2603618 (50 µCi) to patients with advanced or metastatic solid tumors. LY2603618 was well tolerated with no clinically significant adverse events. Study was limited to three patients due to challenges of conducting ADME studies in patients with advanced cancer. Plasma, urine and feces were analyzed for radioactivity, LY2603618 and metabolites. LY2603618 had a half-life of 10.5 h and was the most abundant entity in plasma, accounting for approximately 69% of total plasma radioactivity. The second most abundant metabolites, H2 and H5, accounted for <10% of total circulating radioactivity. The major route of clearance was via CYP450 metabolism. The mean total recovery of radioactivity was 83%, with approximately 72% of the radioactivity recovered in the feces and approximately 11% in the urine. LY2603618 represented approximately 6% and 3% of the administered dose in feces and urine, respectively. A total of 12 metabolites were identified. In vitro phenotyping indicated that CYP3A4 was predominantly responsible for the metabolic clearance of LY2603618. Additionally, aldehyde oxidase was involved in the formation of a unique human and non-human primate metabolite, H5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.