The Smart Energy Research Lab (SERL) Observatory dataset described here comprises half-hourly and daily electricity and gas data, SERL survey data, Energy Performance Certificate (EPC) input data and 24 local hourly climate reanalysis variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) for over 13,000 households in Great Britain (GB). Participants were recruited in September 2019, September 2020 and January 2021 and their smart meter data are collected from up to one year prior to sign up. Data collection will continue until at least August 2022, and longer if funding allows. Survey data relating to the dwelling, appliances, household demographics and attitudes were collected at sign up. Data are linked at the household level and UK-based academic researchers can apply for access within a secure virtual environment for research projects in the public interest. This is a data descriptor paper describing how the data were collected, the variables available and the representativeness of the sample compared to national estimates. It is intended to be a guide for researchers working with or considering using the SERL Observatory dataset, or simply looking to learn more about it.
Temperature and humidity measurements in the upper atmosphere are of critical importance for understanding the Earth's climate. However, such measurements are difficult for several reasons. Rising sondes carry moisture upwards, compromising measurements in the dry stratospheric environment. In addition, the difference in the time constants of thermometers and hygrometers leads to difficulties in determining the extent of saturation of the air. Finally, the effects of insolation, evaporative cooling and the poor thermal contact with the air compound the other measurement problems. To address these issues, tests on a new non-contact temperature and humidity sensor (non-contact thermometer and hygrometer, NCTAH), which can make rapid non-contact measurements in atmospheric air, have been reported. The temperature and humidity measurements are made using an acoustic interferometer and a tuneable diode laser absorption spectrometer (TDLAS), respectively. This combination of sensors offers many potential advantages and allows each sensor to supply a key correction required by the other. The present study describes the design rationale and reports test results measured at the National Physical Laboratory and results from simulated ascents through the atmosphere (to −57 ∘ C and 130 hPa characteristic of an altitude of 15 km) at the Planetary Environment Facility at the University of Aarhus, Denmark. The NCTAH makes two temperature measurements per second with a resolution of ∼0.01 ∘ C and a likely uncertainty of measurement of u(k = 1) = 0.1 ∘ C. Water vapour mixing ratios were measured over a range of ∼100 to 3 x 10 4 ppmv corresponding to dew points from −42 to +24 ∘ C at atmospheric pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.