We prove new results on perfect state transfer of quantum walks on quotient graphs. Since a graph G has perfect state transfer if and only if its quotient G/\pi, under any equitable partition \pi, has perfect state transfer, we exhibit graphs with perfect state transfer between two vertices but which lack automorphism swapping them. This answers a question of Godsil (Discrete Mathematics 312(1):129-147, 2011). We also show that the Cartesian product of quotient graphs \Box_{k} G_{k}/\pi_{k} is isomorphic to the quotient graph \Box_{k} G_{k}/\pi, for some equitable partition \pi. This provides an algebraic description of a construction due to Feder (Physical Review Letters 97, 180502, 2006) which is based on many-boson quantum walk.
We prove new results on perfect state transfer of quantum walks on quotient graphs. Since a graph G has perfect state transfer if and only if its quotient G/π, under any equitable partition π, has perfect state transfer, we exhibit graphs with perfect state transfer between two vertices but which lack automorphism swapping them. This answers a question of Godsil (Discrete Mathematics 312(1):129-147, 2011). We also show that the Cartesian product of quotient graphs k G k /π k is isomorphic to the quotient graph k G k /π, for some equitable partition π. This provides an algebraic description of a construction due to Feder (Physical Review Letters 97, 180502, 2006) which is based on many-boson quantum walk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.