The lack of measurement of precipitation in large areas using fine-resolution data is a limitation in water management, particularly in developing countries. However, Version 6 of the Integrated Multi-satellitE Retrievals for GPM (IMERG) has provided a new source of precipitation information with high spatial and temporal resolution. In this study, the performance of the GPM products (Final run) in the state of Paraná, located in the southern region of Brazil, from June 2000 to December 2018 was evaluated. The daily and monthly products of IMERG were compared to the gauge data spatially distributed across the study area. Quantitative and qualitative metrics were used to analyze the performance of IMERG products to detect precipitation events and anomalies. In general, the products performed positively in the estimation of monthly rainfall events, both in volume and spatial distribution, and demonstrated limited performance for daily events and anomalies, mainly in mountainous regions (coast and southwest). This may be related to the orographic rainfall in these regions, associating the intensity of the rain, and the topography. IMERG products can be considered as a source of precipitation data, especially on a monthly scale. Product calibrations are suggested for use on a daily scale and for time-series analysis.
This study aims to calibrate and validate the generic crop model (CROPGRO-Soybean) and estimate the soybean yield, considering simulations with different sowing times for the current period (1990-2013) and future climate scenario (2014-2030). The database used came from observed data, nine climate models of CORDEX (Coordinated Regional climate Downscaling Experiment)-Africa framework and MERRA (Modern Era Retrospective-Analysis for Research and Applications) reanalysis. The calibration and validation data for the model were acquired in field experiments, carried out in the 2009/2010 and 2010/2011 growing seasons in the experimental area of the International Institute of Tropical Agriculture (IITA) in Angónia, Mozambique. The yield of two soybean cultivars: Tgx 1740-2F and Tgx 1908-8F was evaluated in the experiments and modeled for two distinct CO 2 concentrations. Our model simulation results indicate that the fertilization effect leads to yield gains for both cultivars, ranging from 11.4% (Tgx 1908-8F) to 15% (Tgx 1740-2Fm) when compared to the performance of those cultivars under current CO 2 atmospheric concentration. Moreover, our results show that MERRA, the RegCM4 (Regional Climatic Model version 4) and CNRM-CM5 (Centre National de Recherches Météorologiques-Climatic Model version 5) models provided more accurate estimates of yield, while others models underestimate yield as compared to observations, a fact that was demonstrated to be related to the model's capability of reproducing the precipitation and the surface radiation amount.
Hydrological models are valuable tools for developing streamflow predictions in unmonitored catchments to increase our understanding of hydrological processes. A recent effort has been made in the development of hybrid (conceptual/machine learning) models that can preserve some of the hydrological processes represented by conceptual models and can improve streamflow predictions. However, these studies have not explored how the data-driven component of hybrid models resolved runoff routing. In this study, explainable artificial intelligence (XAI) techniques are used to turn a ‘black-box’ model into a ‘glass box’ model. The hybrid models reduced the root-mean-square error of the simulated streamflow values by approximately 27, 50, and 24% for stations 17120000, 27380000, and 33680000, respectively, relative to the traditional method. XAI techniques helped unveil the importance of accounting for soil moisture in hydrological models. Differing from purely data-driven hydrological models, the inclusion of the production storage in the proposed hybrid model, which is responsible for estimating the water balance, reduced the short- and long-term dependencies of input variables for streamflow prediction. In addition, soil moisture controlled water percolation, which was the main predictor of streamflow. This finding is because soil moisture controls the underlying mechanisms of groundwater flow into river streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.