Abstract. As future astrophysics missions require space telescopes with greater sensitivity and angular resolution, the corresponding increase in the primary mirror diameter presents numerous challenges. Since fairing restrictions limit the maximum diameter of monolithic and deployable segmented mirrors that can be launched, there is a need for on-orbit assembly methods that decouple the mirror diameter from the choice of launch vehicle. In addition, larger mirrors are more susceptible to vibrations and are typically so lightly damped that vibrations could persist for some time if uncontrolled. To address these challenges, we present a segmented mirror architecture in which the segments are connected edgewise by mechanisms analogous to damped springs. These mechanisms can be damped springs, flux-pinning mechanisms, virtual mechanisms, or any other device with the same basic behavior. Using a parametric finite-element model, we show that for low to intermediate stiffnesses, the stiffness and damping contributions from the mechanisms improve both the natural frequency and disturbance response of the segmented mirror. At higher stiffnesses, the mechanisms structurally connect the segments, leading to a segmented mirror that performs comparably to a monolith-or better, depending on the mechanism damping-with the modular design enabling on-orbit assembly and scalability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.