This Article details the development
of the iron-catalyzed conversion
of olefins to radicals and their subsequent use in the construction
of C–C bonds. Optimization of a reductive diene cyclization
led to the development of an intermolecular cross-coupling of electronically-differentiated
donor and acceptor olefins. Although the substitution on the donor
olefins was initially limited to alkyl and aryl groups, additional
efforts culminated in the expansion of the scope of the substitution
to various heteroatom-based functionalities, providing a unified olefin
reactivity. A vinyl sulfone acceptor olefin was developed, which allowed
for the efficient synthesis of sulfone adducts that could be used
as branch points for further diversification. Moreover, this reactivity
was extended into an olefin-based Minisci reaction to functionalize
heterocyclic scaffolds. Finally, mechanistic studies resulted in a
more thorough understanding of the reaction, giving rise to the development
of a more efficient second-generation set of olefin cross-coupling
conditions.
A dual catalytic sp 3 α C−H arylation and alkylation of benzamides with organic halides is described. This protocol exhibits an exquisite site selectivity, chemoselectivity, and enantioselectivity pattern, offering a complementary reactivity mode to existing sp 3 arylation or alkylations via transition metal catalysis or photoredox events.
The functionalization of halloysite nanotube (HNT) surfaces with aminosilanes is an important strategy for their further decoration with organic molecules to obtain hybrid inorganic–organic nanoarchitectures to be used in catalysis and drug delivery.
The stereoselective alkylation of aldehydes with benzodithiolylium tetrafluoborate gave a straightforward access to key compounds for the synthesis of fragrances and flavors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.