Motivated by problem of determining the unknotted routes for the scaffolding strand in DNA origami self-assembly, we examine the existence and knottedness of A-trails in graphs embedded on the torus. We show that any A-trail in a checkerboard-colorable torus graph is unknotted and characterizes the existence of A-trails in checkerboard-colorable torus graphs in terms of pairs of quasitrees in associated embeddings. Surface meshes are frequent targets for DNA nanostructure self-assembly, and so we study both triangular and rectangular torus grids. We show that aside from one exceptional family, a triangular torus grid contains an A-trail if and only if it has an odd number of vertices, and that such an A-trail is necessarily unknotted. On the other hand, while every rectangular torus grid contains an unknotted A-trail, we also show that any torus knot can be realized as an A-trail in some rectangular grid. Lastly, we use a gluing operation to construct infinite families of triangular and rectangular grids containing unknotted A-trails on surfaces of arbitrary genus. We also give infinite families of triangular grids containing no unknotted A-trail on surfaces of arbitrary nonzero genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.