The accuracy of the PheNorm algorithms is on par with algorithms trained with annotated samples. PheNorm fully automates the generation of accurate phenotyping algorithms and demonstrates the capacity for EHR-driven annotations to scale to the next level - phenotypic big data.
Purpose We aimed to determine the degree to which reasons for primary care visits changed during the COVID-19 pandemic. Methods We used data from the University of Toronto Practice Based Research Network (UTOPIAN) to compare the most common reasons for primary care visits before and after the onset of the COVID-19 pandemic, focusing on the number of visits and the number of patients seen for each of the 25 most common diagnostic codes. The proportion of visits involving virtual care was assessed as a secondary outcome. Results UTOPIAN family physicians (N = 379) conducted 702,093 visits, involving 264,942 patients between March 14 and December 31, 2019 (pre-pandemic period), and 667,612 visits, involving 218,335 patients between March 14 and December 31, 2020 (pandemic period). Anxiety was the most common reason for visit, accounting for 9.2% of the total visit volume during the pandemic compared to 6.5% the year before. Diabetes and hypertension remained among the top 5 reasons for visit during the pandemic, but there were 23.7% and 26.2% fewer visits and 19.5% and 28.8% fewer individual patients accessing care for diabetes and hypertension, respectively. Preventive care visits were substantially reduced, with 89.0% fewer periodic health exams and 16.2% fewer well-baby visits. During the pandemic, virtual care became the dominant care format (77.5% virtual visits). Visits for anxiety and depression were the most common reasons for a virtual visit (90.6% virtual visits). Conclusion The decrease in primary care visit volumes during the COVID-19 pandemic varied based on the reason for the visit, with increases in visits for anxiety and decreases for preventive care and visits for chronic diseases. Implications of increased demands for mental health services and gaps in preventive care and chronic disease management may require focused efforts in primary care.
Background Although effective mental health treatments exist, the ability to match individuals to optimal treatments is poor, and timely assessment of response is difficult. One reason for these challenges is the lack of objective measurement of psychiatric symptoms. Sensors and active tasks recorded by smartphones provide a low-burden, low-cost, and scalable way to capture real-world data from patients that could augment clinical decision-making and move the field of mental health closer to measurement-based care. Objective This study tests the feasibility of a fully remote study on individuals with self-reported depression using an Android-based smartphone app to collect subjective and objective measures associated with depression severity. The goals of this pilot study are to develop an engaging user interface for high task adherence through user-centered design; test the quality of collected data from passive sensors; start building clinically relevant behavioral measures (features) from passive sensors and active inputs; and preliminarily explore connections between these features and depression severity. Methods A total of 600 participants were asked to download the study app to join this fully remote, observational 12-week study. The app passively collected 20 sensor data streams (eg, ambient audio level, location, and inertial measurement units), and participants were asked to complete daily survey tasks, weekly voice diaries, and the clinically validated Patient Health Questionnaire (PHQ-9) self-survey. Pairwise correlations between derived behavioral features (eg, weekly minutes spent at home) and PHQ-9 were computed. Using these behavioral features, we also constructed an elastic net penalized multivariate logistic regression model predicting depressed versus nondepressed PHQ-9 scores (ie, dichotomized PHQ-9). Results A total of 415 individuals logged into the app. Over the course of the 12-week study, these participants completed 83.35% (4151/4980) of the PHQ-9s. Applying data sufficiency rules for minimally necessary daily and weekly data resulted in 3779 participant-weeks of data across 384 participants. Using a subset of 34 behavioral features, we found that 11 features showed a significant (P<.001 Benjamini-Hochberg adjusted) Spearman correlation with weekly PHQ-9, including voice diary–derived word sentiment and ambient audio levels. Restricting the data to those cases in which all 34 behavioral features were present, we had available 1013 participant-weeks from 186 participants. The logistic regression model predicting depression status resulted in a 10-fold cross-validated mean area under the curve of 0.656 (SD 0.079). Conclusions This study finds a strong proof of concept for the use of a smartphone-based assessment of depression outcomes. Behavioral features derived from passive sensors and active tasks show promising correlations with a validated clinical measure of depression (PHQ-9). Future work is needed to increase scale that may permit the construction of more complex (eg, nonlinear) predictive models and better handle data missingness.
Objective: Electronic health records (EHR) linked with biorepositories are a powerful platform for translational studies. A major bottleneck exists in the ability to phenotype patients accurately and efficiently. The objective of this study was to develop an automated high-throughput phenotyping method integrating International Classification of Diseases (ICD) codes and narrative data extracted using natural language processing (NLP). Method:We developed a mapping method for automatically identifying relevant ICD and NLP concepts for a specific phenotype leveraging the UMLS. Aggregated ICD and NLP counts along with healthcare utilization were jointly analyzed by fitting an ensemble of latent mixture models. The MAP algorithm yields a predicted probability of phenotype for each patient and a threshold for classifying subjects with phenotype yes/no. The algorithm was validated using labeled data for 16 phenotypes from a biorepository and further tested in an independent cohort PheWAS for two SNPs with known associations. Results:The MAP algorithm achieved higher or similar AUC and F-scores compared to the ICD code across all 16 phenotypes. The features assembled via the automated approach had comparable accuracy to those assembled via manual curation (AUCMAP 0.943, AUCmanual 0.941). The PheWAS results suggest that the MAP approach detected previously validated associations with higher power when compared to the standard PheWAS method based on ICD codes. Conclusion:The MAP approach increased the accuracy of phenotype definition while maintaining scalability, facilitating use in studies requiring large scale phenotyping, such as PheWAS.
Objective Electronic health records linked with biorepositories are a powerful platform for translational studies. A major bottleneck exists in the ability to phenotype patients accurately and efficiently. The objective of this study was to develop an automated high-throughput phenotyping method integrating International Classification of Diseases (ICD) codes and narrative data extracted using natural language processing (NLP). Materials and Methods We developed a mapping method for automatically identifying relevant ICD and NLP concepts for a specific phenotype leveraging the Unified Medical Language System. Along with health care utilization, aggregated ICD and NLP counts were jointly analyzed by fitting an ensemble of latent mixture models. The multimodal automated phenotyping (MAP) algorithm yields a predicted probability of phenotype for each patient and a threshold for classifying participants with phenotype yes/no. The algorithm was validated using labeled data for 16 phenotypes from a biorepository and further tested in an independent cohort phenome-wide association studies (PheWAS) for 2 single nucleotide polymorphisms with known associations. Results The MAP algorithm achieved higher or similar AUC and F-scores compared to the ICD code across all 16 phenotypes. The features assembled via the automated approach had comparable accuracy to those assembled via manual curation (AUCMAP 0.943, AUCmanual 0.941). The PheWAS results suggest that the MAP approach detected previously validated associations with higher power when compared to the standard PheWAS method based on ICD codes. Conclusion The MAP approach increased the accuracy of phenotype definition while maintaining scalability, thereby facilitating use in studies requiring large-scale phenotyping, such as PheWAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.