Proteins that are synthesized on cytoplasmic ribosomes but function within plastids must be imported and then targeted to one of six plastid locations. Although multiple systems that target proteins to the thylakoid membranes or thylakoid lumen have been identified, a system that can direct the integration of inner envelope membrane proteins from the stroma has not been previously described. Genetics and localization studies were used to show that plastids contain two different Sec systems with distinct functions. Loss-of-function mutations in components of the previously described thylakoid-localized Sec system, designated as SCY1 (At2g18710), SECA1 (At4g01800), and SECE1 (At4g14870) in Arabidopsis (Arabidopsis thaliana), result in albino seedlings and sucrose-dependent heterotrophic growth. Loss-of-function mutations in components of the second Sec system, designated as SCY2 (At2g31530) and SECA2 (At1g21650) in Arabidopsis, result in arrest at the globular stage and embryo lethality. Promoter-swap experiments provided evidence that SCY1 and SCY2 are functionally nonredundant and perform different roles in the cell. Finally, chloroplast import and fractionation assays and immunogold localization of SCY2-green fluorescent protein fusion proteins in root tissues indicated that SCY2 is part of an envelope-localized Sec system. Our data suggest that SCY2 and SECA2 function in Sec-mediated integration and translocation processes at the inner envelope membrane.
SUMMARYThylakoid membranes have a unique complement of proteins, most of which are nuclear encoded synthesized in the cytosol, imported into the stroma and translocated into thylakoid membranes by specific thylakoid translocases. Known thylakoid translocases contain core multi-spanning, membrane-integrated subunits that are also nuclear-encoded and imported into chloroplasts before being integrated into thylakoid membranes. Thylakoid translocases play a central role in determining the composition of thylakoids, yet the manner by which the core translocase subunits are integrated into the membrane is not known. We used biochemical and genetic approaches to investigate the integration of the core subunit of the chloroplast Tat translocase, cpTatC, into thylakoid membranes. In vitro import assays show that cpTatC correctly localizes to thylakoids if imported into intact chloroplasts, but that it does not integrate into isolated thylakoids. In vitro transit peptide processing and chimeric precursor import experiments suggest that cpTatC possesses a stroma-targeting transit peptide. Import time-course and chase assays confirmed that cpTatC targets to thylakoids via a stromal intermediate, suggesting that it might integrate through one of the known thylakoid translocation pathways. However, chemical inhibitors to the cpSecA-cpSecY and cpTat pathways did not impede cpTatC localization to thylakoids when used in import assays. Analysis of membranes isolated from Arabidopsis thaliana mutants lacking cpSecY or Alb3 showed that neither is necessary for cpTatC membrane integration or assembly into the cpTat receptor complex. These data suggest the existence of another translocase, possibly one dedicated to the integration of chloroplast translocases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.