This study evaluated a novel approach to decellularizing porcine adipose tissue while preserving its 3-D architecture. An ethanol-water mixture was used as a solvent to remove lipids and the number of freeze-thaw cycles (1-7), ethanol concentration, and tissue thickness were tested. Trypsin incubation time (1-3 h) and xylene immersion time were investigated separately. Processed sample microarchitecture was analyzed via scanning electron microscope, cellular content was analyzed via hematoxylin and eosin (H&E) staining, and DNA content was analyzed using gel electrophoresis. Tensile testing and five-stage incremental stress-relaxation testing was performed in phosphate-buffered saline at 37°C. Human neuroblasts were seeded and evaluated for infiltration and attachment over 8 days. Four cycles of freeze-thaw in 50% ethanol-water mixture removed one-third of the lipids. Microarchitecture showed the presence of pores, capillary channels, and lack of sidedness; H&E micrographs confirmed unaltered morphology and absence of cells. Incubation for 1.5 h in trypsin removed 99.5% DNA from delipidized samples. An average of 40% rehydration swelling, an elastic modulus of 324(±141) kPa, and an ultimate tensile strength of 87.4(±23.1) kPa were observed. The matrix exhibited strain hardening behavior similar to small intestinal submucosa. Cells successfully infiltrated and spread in the decellularized scaffold. Removal of lipids significantly reduced incubation in trypsin EDTA. In summary, the acellular matrix shows significant potential as a new template for tissue regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3127-3136, 2016.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.