Growing resistance of pathogenic bacteria and shortage of antibiotic discovery platforms challenge the use of antibiotics in the clinic. This threat calls for exploration of unconventional sources of antibiotics and identification of inhibitors able to eradicate resistant bacteria. Here we describe a different class of antibiotics, odilorhabdins (ODLs), produced by the enzymes of the non-ribosomal peptide synthetase gene cluster of the nematode-symbiotic bacterium Xenorhabdus nematophila. ODLs show activity against Gram-positive and Gram-negative pathogens, including carbapenem-resistant Enterobacteriaceae, and can eradicate infections in animal models. We demonstrate that the bactericidal ODLs interfere with protein synthesis. Genetic and structural analyses reveal that ODLs bind to the small ribosomal subunit at a site not exploited by current antibiotics. ODLs induce miscoding and promote hungry codon readthrough, amino acid misincorporation, and premature stop codon bypass. We propose that ODLs' miscoding activity reflects their ability to increase the affinity of non-cognate aminoacyl-tRNAs to the ribosome.
Since the early 1980s, fungi have emerged as a major cause of human disease. Fungal infections are associated with high levels of morbidity and mortality, and are now recognized as an important public health problem. Gram-negative bacterial strains of genus Xenorhabdus are known to form symbiotic associations with soil-dwelling nematodes of the Steinernematidae family. We describe here the discovery of a new antifungal metabolite, cabanillasin, produced by Xenorhabdus cabanillasii. We purified this molecule by cation-exchange chromatography and reverse-phase chromatography. We then determined the chemical structure of cabanillasin by homo- and heteronuclear NMR and MS-MS. Cabanillasin was found to be active against yeasts and filamentous fungi involved in opportunistic infections.
Antibacterial activity screening of a collection of Xenorhabdus strains led to the discovery of the odilorhabdins, a new antibiotic class with broad-spectrum activity against Gram-positive and Gram-negative pathogens. Odilorhabdins inhibit bacterial translation by a new mechanism of action on ribosomes.
The
Enterobacter cloacae
complex (ECC) is a group of diverse environmental and clinically relevant bacterial species associated with a variety of infections in humans. ECC have emerged as one of the leading causes of nosocomial infections worldwide.
Odilorhabdins (ODLs) constitute a novel antibiotic family with promising properties for treating problematic multidrug-resistant Gram-negative bacterial infections. ODLs are 10-mer linear cationic peptides inhibiting bacterial translation by binding to the small subunit of the ribosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.