Our findings suggest that E-cadherin may play an important role in the pathogenesis of ulcerative colitis, one of the major clinical forms of inflammatory bowel disease.
The cell adhesion molecule E-cadherin has critical functions in development and carcinogenesis. Impaired expression of E-cadherin has been associated with disrupted tissue homeostasis, progression of cancer and a worse patient prognosis. So far, the role of E-cadherin in homeostasis and carcinogenesis of the liver is not well understood. By use of a mouse model with liver-specific deletion of E-cadherin and administration of the carcinogen diethylnitrosamine, we demonstrate that loss of E-cadherin expression in hepatocytes results in acceleration of the growth of hepatocellular carcinoma (HCC). In contrast, liver regeneration is not disturbed in mice lacking E-cadherin expression in hepatocytes. In human HCC, we observed four different expression patterns of E-cadherin. Notably, atypical cytosolic expression of E-cadherin was positively correlated with a poorer patient prognosis. The median overall survival of patients with HCC expressing E-cadherin on the membrane only was 221 weeks (95% confidence interval: 51-391) compared with 131 weeks in patients with cytosolic expression (95% confidence interval: 71-191 weeks; P < 0.05). In conclusion, we demonstrate that impaired expression of E-cadherin promotes hepatocellular carcinogenesis and is associated with a worse prognosis in humans.
Colorectal cancer develops from adenomatous precursor lesions by a multistep process that involves several independent mutational events in oncogenes and tumor suppressor genes. Inactivation of the adenomatous polyposis coli (APC) tumor suppressor gene is an early event and a prerequisite for the development of human colorectal adenoma. Previous in vitro studies identified DRO1 (CCDC80) to be a putative tumor suppressor gene that is negatively regulated in colorectal cancers and downregulated upon neoplastic transformation of epithelial cells. To investigate the in vivo role of DRO1 in colorectal carcinogenesis, a constitutive DRO1 knockout mouse model was generated. Disruption of DRO1 did not result in spontaneous intestinal tumor formation, consistent with the notion that DRO1 might have a role in suppressing the development of colon tumors in Apc Min/þ mice, a widely used model for studying the role of APC in intestinal tumorigenesis that is hampered by the fact that mice predominantly develop adenomas in the small intestine and not in the colon. Here, deletion of DRO1 in ApcMin/þ mice results in earlier death, a dramatically increased colonic tumor burden, and frequent development of colorectal carcinoma. Furthermore, enhanced phosphorylation of ERK1/2 is observed in colon epithelium and tumors from DRO1 knockout mice. Thus, this study reveals that inactivation of DRO1 is required for colorectal carcinogenesis in the Apc Min/þ mouse and establishes a new mouse model for the study of colorectal cancer.
Colorectal carcinogenesis is a progressive multistep process involving the sequential accumulation of genetic alterations in tumor suppressor genes and oncogenes. Downregulated by oncogenes 1 (Dro1/Ccdc80) has been shown to be a potent tumor suppressor of colorectal carcinogenesis in the genetic ApcMin/+ mouse model. In ApcMin/+ mice, loss of DRO1 strongly increases colonic tumor multiplicity and leads to the regular formation of adenocarcinoma in the colon. To investigate DRO1's role in chemically induced as well as inflammation-associated colorectal carcinogenesis, the effect of Dro1 inactivation was studied in mice subjected to the carcinogen azoxymethane (AOM) and upon combined treatment with AOM and the proinflammatory agent dextran sodium sulfate (DSS), respectively. Loss of DRO1 increases multiplicity of preneoplastic aberrant crypt foci and colonic tumors upon administration of AOM. Combined treatment with AOM and DSS leads to increased colonic tumor number and promotes formation of adenocarcinoma in the colon. Moreover, Dro1 inactivation aggravates histological signs of acute and chronic DSS-induced colitis, strongly enlarges the size of ulcerative lesions in the intestinal lining, and exacerbates clinical signs and morbidity by DSS. Our results demonstrate DRO1 to be a strong tumor suppressor in the chemically induced colon carcinogenic mouse model. Additionally, we demonstrate DRO1 to inhibit colitis-associated colon cancer formation and uncover a novel putative role for DRO1 in inflammatory bowel disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.