c Quantitative real-time PCR (QRT-PCR) has been widely implemented for clinical viral load testing, but a lack of standardization and relatively poor precision have hindered its usefulness. Digital PCR offers highly precise, direct quantification without requiring a calibration curve. Performance characteristics of real-time PCR were compared to those of droplet digital PCR (ddPCR) for cytomegalovirus (CMV) load testing. Tenfold serial dilutions of the World Health Organization (WHO) and the National Institute of Standards and Technology (NIST) CMV quantitative standards were tested, together with the AcroMetrix CMV tc panel (Life Technologies, Carlsbad, CA) and 50 human plasma specimens. Each method was evaluated using all three standards for quantitative linearity, lower limit of detection (LOD), and accuracy. Quantitative correlation, mean viral load, and variability were compared. Real-time PCR showed somewhat higher sensitivity than ddPCR (LODs, 3 log 10 versus 4 log 10 copies/ml and IU/ml for NIST and WHO standards, respectively). Both methods showed a high degree of linearity and quantitative correlation for standards (R 2 > 0.98 in each of 6 regression models) and clinical samples (R 2 ؍ 0.93) across their detectable ranges. For higher concentrations, ddPCR showed less variability than QRT-PCR for the WHO standards and AcroMetrix standards (P < 0.05). QRT-PCR showed less variability and greater sensitivity than did ddPCR in clinical samples. Both digital and real-time PCR provide accurate CMV load data over a wide linear dynamic range. Digital PCR may provide an opportunity to reduce the quantitative variability currently seen using real-time PCR, but methods need to be further optimized to match the sensitivity of real-time PCR.
OBJECTIVE: To compare a real-time polymerase chain reaction (PCR) assay with broth culture for the detection of Trichomonas vaginalis using self-collected vaginal swabs. METHODS: Self-collected vaginal swabs were obtained from adolescent and young adult African-American women participating in HIV-1 prevention programs. T. vaginalis culture was performed using the InPouch TV System. Samples for the real-time PCR assay were collected using the BDProbeTec ET Culturette Direct Dry Swab system and tested in a laboratory-developed assay which targeted a repeated sequence of the genome. Discrepant samples that were culture negative and positive in the real-time PCR assay were tested in a confirmatory PCR which targeted a different region of the T. vaginalis genome, the18S ribosomal DNA gene. RESULTS: Of the 524 specimens tested by both culture and real-time PCR, 36 were culture positive and 54 were positive in the real-time PCR assay; 16 of the 18 discrepant specimens were also positive in the confirmatory PCR assay. Using a modified gold standard of positive by culture or positive in both PCR assays, the sensitivity of the real-time PCR assay was 100% and the specificity was 99.6%, whereas culture had a sensitivity of 69.2% and a specificity of 100%. CONCLUSIONS: The real-time PCR assay was sensitive and specific for the detection of T. vaginalis DNA from self-collected vaginal swab specimens. The ability to use the BDProbeTec dry swab system for the real-time PCR testing allowed for the detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and T. vaginalis from a single specimen.
Despite lower CVF concentrations of key HAART components, such as efavirenz and lopinavir, virologic rebound was rare. The high concentrations of tenofovir and lamivudine in CVF may have implications for the prevention of sexual transmission during HAART and for pre-exposure or postexposure prophylaxis.
Women with below-detectable PVL may have less risk of HIV sexual transmission on a population level, but may continue to be infectious on an individual level.
Plasma viral load is the strongest predictor of CVL fluid HIV-1 RNA detection. Cervicovaginal lavage fluid HIV-1 RNA levels are generally lower than PVL. Plasma viral load is more likely to rebound first or at the same time as CVL fluid viral load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.