Small extracellular vesicles (sEVs), 50–150 nm in diameter, have been proposed to mediate cell–cell communication with important implications in tumor microenvironment interactions, tumor growth, and metastasis. We previously showed that mutant KRAS colorectal cancer (CRC) cells release sEVs containing Rab13 protein and mRNA. Previous work had shown that disruption of intracellular Rab13 trafficking inhibits epithelial cell proliferation and invasiveness. Here, we show that Rab13 additionally regulates the secretion of sEVs corresponding to both traditional exosomes and a novel subset of vesicles containing both β1-integrin and Rab13. We find that exposure of recipient cells to sEVs from KRAS mutant donor cells increases proliferation and tumorigenesis and that knockdown of Rab13 blocks these effects. Thus, Rab13 serves as both a cargo protein and as a regulator of sEV secretion. Our data support a model whereby Rab13 can mediate its effects on cell proliferation and invasiveness via autocrine and paracrine signaling.
Extracellular vesicles (EVs) are capable of transferring cargo from donor to recipient cells, but precisely how cargo content is regulated for export is mostly unknown. For miRNA cargo, we previously showed that when compared to isogenic colorectal cancer (CRC) cells expressing wild-type KRAS, a distinct subset of miRNAs are differentially enriched in EVs from KRAS mutant active CRC cells, with
miR-100
being one of the most enriched. The mechanisms that could explain how
miR-100
and other miRNAs are differentially exported into EVs have not been fully elucidated. Here, we tested the effect of N
6
-methyladenosine (m
6
A) modification on miRNA export into EVs by depletion of METTL3 and ALKBH5, a writer and eraser of m
6
A modification, respectively. While the effects of ALKBH5 knockdown were quite modest, decreased levels of METTL3 led to reduced cellular and extracellular levels of a subset of miRNAs that contain consensus sequences for m
6
A modification. Functional testing of EVs prepared from cells expressing shRNAs against METTL3 showed that they were less capable of conferring colony growth in 3D to wild-type KRAS cells and were also largely incapable of conferring the spread of cetuximab resistance. Our data support a role for METTL3 modification on cellular miRNA levels and export of specific miRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.