We have recently reported that therapeutic mesenchymal stromal cells (MSCs) have low engraftment and trigger the instant blood mediated inflammatory reaction (IBMIR) after systemic delivery to patients, resulting in compromised cell function. In order to optimize the product, we compared the immunomodulatory, blood regulatory, and therapeutic properties of freeze-thawed and freshly harvested cells. We found that freeze-thawed MSCs, as opposed to cells harvested from continuous cultures, have impaired immunomodulatory and blood regulatory properties. Freeze-thawed MSCs demonstrated reduced responsiveness to proinflammatory stimuli, an impaired production of anti-inflammatory mediators, increased triggering of the IBMIR, and a strong activation of the complement cascade compared to fresh cells. This resulted in twice the efficiency in lysis of thawed MSCs after 1 hour of serum exposure. We found a 50% and 80% reduction in viable cells with freshly detached as opposed to thawed in vitro cells, indicating a small benefit for fresh cells. In evaluation of clinical response, we report a trend that fresh cells, and cells of low passage, demonstrate improved clinical outcome. Patients treated with freshly harvested cells in low passage had a 100% response rate, twice the response rate of 50% observed in a comparable group of patients treated with freeze-thawed cells at higher passage. We conclude that cryobanked MSCs have reduced immunomodulatory and blood regulatory properties directly after thawing, resulting in faster complement-mediated elimination after blood exposure. These changes seem to be paired by differences in therapeutic efficacy in treatment of immune ailments after hematopoietic stem cell transplantation.
Background and purpose Immediate implant stability is a key factor for success in cementless total hip arthroplasty (THA). Low bone mineral density (BMD) and age-related geometric changes of the proximal femur may jeopardize initial stability and osseointegration. We compared migration of hydroxyapatite-coated femoral stems in women with or without low systemic BMD.Patients and methods 61 female patients with hip osteoarthritis were treated with cementless THA with anatomically designed hydroxyapatite-coated femoral stems and ceramic-ceramic bearing surfaces (ABG-II). Of the 39 eligible patients between the ages of 41 and 78 years, 12 had normal systemic BMD and 27 had osteopenia or osteoporosis. According to the Dorr classification, 21 had type A bone and 18 had type B. Translational and rotational migration of the stems was evaluated with radiostereometric analysis (RSA) up to 2 years after surgery.Results Patients with low systemic BMD showed higher subsidence of the femoral stem during the first 3 months after surgery than did those with normal BMD (difference = 0.6, 95% CI: 0.1–1.1; p = 0.03). Low systemic BMD (odds ratio (OR) = 0.1, CI: 0.006–1.0; p = 0.02), low local hip BMD (OR = 0.3, CI: 0.1–0.7; p = 0.005) and ageing (OR = 1.1, CI: 1.0–1.2; p = 0.02) were risk factors for delayed translational stability. Ageing and low canal flare index were risk factors for delayed rotational stabilization (OR = 3, CI: 1.1–9; p = 0.04 and OR = 1.1, CI: 1.0–1.2; p = 0.02, respectively). Harris hip score and WOMAC score were similar in patients with normal systemic BMD and low systemic BMD.Interpretation Low BMD, changes in intraosseous dimensions of the proximal femur, and ageing adversely affected initial stability and delayed osseointegration of cementless stems in women.
ABSTRACT:We examined the presence of circulating plastic adherent multipotent mesenchymal stem cells (MSCs) in fracture patients. Three patient groups (n = 10-18) were evaluated, including elderly females with a femoral neck fracture treated with cemented hemiarthroplasty, an age-and sex-matched group with hip osteoarthritis (OA) treated with cemented total hip arthroplasty (THA), and younger adults with surgically treated lower extremity fractures. The presence of circulating MSCs pre-and postoperatively was compared to bone marrow (BM) MSCs from the same subjects. Criteria for identifying MSCs included cell surface markers (CD105+, CD73+, CD90+, CD45−, CD14−), proliferation through several passages as well as osteogenic, chondrogenic, and adipogenic differentiation. Plastic adherent MSCs were found in peripheral blood (PB) from 22% of hip fracture patients, 46% of younger fracture patients, and in none of 63 pre-and postmenopausal women with hip OA. When detectable, circulating MSCs appeared between 39 and 101 h after fracture. PB derived MSCs did not differ from BM derived MSCs, except for a small population (<15%) of CD34+ cells among PB derived MSCs. This initial study indicates mobilization of MSCs into the circulation in response to fracture, even in very old patients, while circulating MSCs were not detectable before or after elective THA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.