ARGONAUTE proteins (AGOs) are known to be key components of the RNA silencing mechanism in eukaryotes that, among other functions, serves to protect against viral invaders. Higher plants encode at least 10 individual AGOs yet the role played by many in RNA silencing-related antiviral defense is largely unknown, except for reports that AGO1, AGO2, and AGO7 play an antiviral role in Arabidopsis (Arabidopsis thaliana). In the plant virus model host Nicotiana benthamiana, Tomato bushy stunt virus (TBSV) P19 suppressor mutants are very susceptible to RNA silencing. Here, we report that a N. benthamiana AGO (NbAGO) with similarity to Arabidopsis AGO2, is involved in antiviral defense against TBSV. The activity of this NbAGO2 is shown to be directly associated with anti-TBSV RNA silencing, while its inactivation does not influence silencing of transiently expressed transgenes. Thus, the role of NbAGO2 might be primarily for antiviral defense.
Tomato bushy stunt virus (TBSV) and other tombusviruses encode a p19 protein (P19), which is a suppressor of RNAi. Wild-type TBSV or p19-defective mutants initially show a similar infection course in Nicotiana benthamiana, but the absence of an active P19 results in viral RNA degradation followed by recovery from infection. P19 homodimers sequester 21-nt virus-derived duplex siRNAs, and it is thought that this prevents the programming of an antiviral RNAinduced silencing complex to avoid viral RNA degradation. Here we report on chromatographic fractionation (gel filtration, ion exchange, and hydroxyapatite) of extracts from healthy or infected Nicotiana benthamiana plants in combination with in vitro assays for ribonuclease activity and detection of TBSV-derived siRNAs. Only extracts of plants infected with p19 mutants provided a source of sequence-nonspecific but ssRNA-targeted in vitro ribonuclease activity that coeluted with components of a wide molecular weight range. In addition, we isolated a discrete Ϸ500-kDa protein complex that contained Ϸ21-nt TBSV-derived siRNAs and that exhibited ribonuclease activity that was TBSV sequencepreferential, ssRNA-specific, divalent cation-dependent, and insensitive to a ribonuclease inhibitor. We believe that this study provides biochemical evidence for a virus-host system that infection in the absence of a fully active RNAi suppressor induces ssRNA-specific ribonuclease activity, including that conferred by a RNA-induced silencing complex, which is likely the cause for the recovery of plants from infection.suppression ͉ silencing ͉ RNA-induced silencing complex
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.