Knowing how stem cells and their progeny are positioned within their tissues is essential for understanding their regulation. One paradigm for stem cell regulation is the C. elegans germline, which is maintained by a pool of germline stem cells in the distal gonad, in a region known as the 'progenitor zone'. The C. elegans germline is widely used as a stem cell model, but the cellular architecture of the progenitor zone has been unclear. Here we characterize this architecture by creating virtual 3D models of the progenitor zone in both sexes. We show that the progenitor zone in adult hermaphrodites is organized like a folded epithelium. The progenitor zone in males is not folded. Analysis of germ cell division shows that daughter cells are born side-by-side along the epithelial-like surface of the germline tissue. Analysis of a key regulator driving differentiation, GLD-1, shows that germ cells in hermaphrodites differentiate along a folded path, with previously described "steps" in GLD-1 expression corresponding to germline folds. Our study provides a three-dimensional view of how C. elegans germ cells progress from stem cell to overt differentiation, with critical implications for regulators driving this transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.