As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis . In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Summary Bacteria belonging to the genus Streptococcus are the first inhabitants of the oral cavity which can be acquired right after birth and thus play an important role in the assembly of the oral microbiota. In this chapter, we will discuss the different oral environments inhabited by streptococci and the species that occupy each niche. Special attention is given to the taxonomy of Streptococcus as this genus is now divided into 8 distinct groups where oral species are found in 6 of them. Oral streptococci produce an arsenal of adhesive molecules that allow them to efficiently colonize different tissues in the mouth. Also, they have a remarkable ability to metabolize carbohydrates via fermentation thereby generating acids as byproducts. Excessive acidification of the oral environment by aciduric species such as Streptococcus mutans is directly associated with the development of dental caries. However, less acid-tolerant species such as Streptococcus salivarius and Streptococcus gordonii produce large amounts of alkali displaying and important role in the acid-base physiology of the oral cavity. Another important characteristic of certain oral streptococci is their ability to generate hydrogen peroxide that can inhibit the growth of S. mutans. Thus, oral streptococci can also be beneficial to the host by producing molecules that are inhibitory to pathogenic species. Lastly, commensal and pathogenic streptococci residing in the oral cavity can eventually gain access to the bloodstream and cause systemic infections such as infective endocarditis.
The stringent response is a global bacterial response to stress that is mediated by accumulation of the alarmone (p)ppGpp. In this study, treatment with mupirocin was shown to induce high levels of (p)ppGpp production in Enterococcus faecalis, indicating that this nosocomial pathogen can mount a classic stringent response. In addition, (p)ppGpp was found to accumulate in cells subjected to heat shock, alkaline shock, and inhibitory concentrations of vancomycin. Sequence analysis of the E. faecalis genome indicated that (p)ppGpp synthesis is catalyzed by the bifunctional synthetase/hydrolase RelA and the RelQ small synthase. The (p)ppGpp profiles of ⌬relA, ⌬relQ, and ⌬relAQ strains revealed that RelA is the major enzyme responsible for the accumulation of (p)ppGpp during antibiotic or physical stresses, while RelQ appears to be responsible for maintaining basal levels of alarmone during homeostatic growth. Compared to its parent, the ⌬relA strain was more susceptible to several stress conditions, whereas complete elimination of (p)ppGpp in a ⌬relAQ double mutant restored many of the stress-sensitive phenotypes of ⌬relA. Interestingly, growth curves and time-kill studies indicated that tolerance to vancomycin is enhanced in the ⌬relA strain but diminished in the ⌬relQ and ⌬relAQ strains. Finally, virulence of the ⌬relAQ strain but not of the ⌬relA or ⌬relQ strain was significantly attenuated in the Caenorhabditis elegans model. Taken together, these results indicate that (p)ppGpp pools modulate environmental stress responses, vancomycin tolerance, and virulence in this important nosocomial pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.