The recent next generation science standards in the United States have emphasized learning about complex systems as a core feature of science learning. Over the past 15 years, a number of educational tools and theories have been investigated to help students learn about complex systems; but surprisingly, little research has been devoted to identifying the supports that teachers need to teach about complex systems in the classroom. In this paper, we aim to address this gap in the literature. We describe a 2-year professional development study in which we gathered data on teachers' abilities and perceptions regarding the delivery of computer-supported complex systems curricula. We present results across the 2 years of the project and demonstrate the need for particular instructional supports to improve implementation efforts, including providing differentiated opportunities to build expertise and addressing teacher beliefs about whether computational-model construction belongs in the science classroom. Results from students' classroom experiences and learning over the 2 years are offered to further illustrate the impact of these instructional supports.
We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS) recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students' complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.
Abstract:The exploratory study reported here is part of a larger-scale research project aimed at building theoretical and practical knowledge of complex systems in students and teachers with the goal of improving high school biology learning. In this paper we propose a model of adaptive expertise to better understand teachers' classroom practices. Through three case studies, we further illustrate the characteristics of adaptive expertise of more or less successful teaching and learning. By doing this research, it is our ultimate goal to contribute to scholarship on practices and training in which teachers must participate to support complex systems teaching and learning in classrooms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.