PGRN, a pleiotrophic growth factor, is known to play an important role in the maintenance and regulation of the homeostatic dynamics of normal tissue development, proliferation, regeneration, and the host-defense response and therefore, has been widely studied in the fields of infectious diseases, wound healing, tumorigenesis, and neuroproliferative and degenerative diseases. PGRN has also emerged as a multifaceted immune-regulatory molecule through regulating the signaling pathways known to be critical for immunology, especially TNF/TNFR signaling. In this review, we start with updates about the interplays of PGRN with ECM proteins, proteolytic enzymes, inflammatory cytokines, and cell-surface receptors, as well as various pathophysiological processes involved. We then review the data supporting an emerging role of PGRN in the fields of the "Cubic of I", namely, immunity, infection, and inflammation, with special focus on its regulation of autoimmune syndromes. We conclude with insights into the immunomodulating, anti-inflammatory, therapeutic potential of PGRN in treating diseases with an inflammatory etiology in a vast range of medical specialties.
Progranulin (PGRN) is a growth factor that has been implicated in wound healing, inflammation, infection, tumorigenesis, and is most known for its neuroprotective and proliferative properties in neurodegenerative disease. This pleiotropic growth factor has been found to be a key player and regulator of a diverse spectrum of multi-systemic functions. Its critical anti-inflammatory role in rheumatoid arthritis and other inflammatory disease models has allowed for the propulsion of research to establish its significance in musculoskeletal diseases, including inflammatory conditions involving bone and cartilage pathology. In this review, we aim to elaborate on the emerging role of PGRN in the musculoskeletal system, reviewing its particular mechanisms described in various musculoskeletal diseases, with special focus on osteoarthritis and inflammatory joint disease patho-mechanisms and potential therapeutic applications of PGRN and its derivatives in these and other musculoskeletal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.