Surface electrical stimulation has the potential to be a powerful and non-invasive treatment for a variety of medical conditions but currently it is difficult to obtain consistent evoked responses. A viable clinical system must be able to adapt to variations in individuals to produce repeatable results. To more fully study the effect of these variations without performing exhaustive testing on human subjects, a system of computer models was created to predict motor and sensory axon activation in the median nerve due to surface electrical stimulation at the elbow. An anatomically-based finite element model of the arm was built to accurately predict voltages resulting from surface electrical stimulation. In addition, two axon models were developed based on previously published models to incorporate physiological differences between sensory and motor axons. This resulted in axon models that could reproduce experimental results for conduction velocity, strength-duration curves and activation threshold. Differences in experimentally obtained action potential shape between the motor and sensory axons were reflected in the models. The models predicted a lower threshold for sensory axons than motor axons of the same diameter, allowing a range of sensory axons to be activated before any motor axons. This system of models will be a useful tool for development of surface electrical stimulation as a method to target specific neural functions.
Upon perceiving sensory errors during movements, the human sensorimotor system updates future movements to compensate for the errors, a phenomenon called sensorimotor adaptation. One component of this adaptation is thought to be driven by sensory prediction errors–discrepancies between predicted and actual sensory feedback. However, the mechanisms by which prediction errors drive adaptation remain unclear. Here, auditory prediction error-based mechanisms involved in speech auditory-motor adaptation were examined via the feedback aware control of tasks in speech (FACTS) model. Consistent with theoretical perspectives in both non-speech and speech motor control, the hierarchical architecture of FACTS relies on both the higher-level task (vocal tract constrictions) as well as lower-level articulatory state representations. Importantly, FACTS also computes sensory prediction errors as a part of its state feedback control mechanism, a well-established framework in the field of motor control. We explored potential adaptation mechanisms and found that adaptive behavior was present only when prediction errors updated the articulatory-to-task state transformation. In contrast, designs in which prediction errors updated forward sensory prediction models alone did not generate adaptation. Thus, FACTS demonstrated that 1) prediction errors can drive adaptation through task-level updates, and 2) adaptation is likely driven by updates to task-level control rather than (only) to forward predictive models. Additionally, simulating adaptation with FACTS generated a number of important hypotheses regarding previously reported phenomena such as identifying the source(s) of incomplete adaptation and driving factor(s) for changes in the second formant frequency during adaptation to the first formant perturbation. The proposed model design paves the way for a hierarchical state feedback control framework to be examined in the context of sensorimotor adaptation in both speech and non-speech effector systems.
The Maeda model was used to generate a large set of vocoid-producing vocal tract configurations. The resulting dataset (a) produced a comprehensive range of formant frequencies and (b) displayed discrete tongue body constriction locations (palatal, velar/uvular, and lower pharyngeal). The discrete parameterization of constriction location across the vowel space suggests this is likely a fundamental characteristic of the human vocal tract, and not limited to any specific set of vowel contrasts. These findings suggest that in addition to established articulatory-acoustic constraints, fundamental biomechanical constraints of the vocal tract may also explain such discreteness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.