Ankle stiffness has been known as one of the most important components contributing to the maintenance of lower body stability during postural balance and locomotion. It has been repeatedly shown that women have lower stability and increased risk of injury when compared to men participating in similar sports activities, yet sex differences in neuromuscular control of the ankle, including the modulation of ankle stiffness, and their contribution to stability remain unknown. To identify sex differences in human ankle stiffness, this study quantified multi-dimensional ankle stiffness in 20 young, healthy men and 20 young, healthy women over a range of ankle muscle contractions, from relaxed to 20% of maximum voluntary co-contraction of ankle muscles. A wearable ankle robot and a system identification method were used to reliably quantify ankle stiffness in a 2-dimensional space spanning the sagittal plane and the frontal plane. In all muscle activation levels, significant sex differences in ankle stiffness were identified in both the sagittal and frontal planes. In the given experimental conditions, ankle stiffness in males was higher than females up to 15.1 and 8.3 Nm/rad in the sagittal plane and the frontal plane, respectively. In addition, sex differences in the spatial structure of ankle stiffness were investigated by quantifying three parameters defining the stiffness ellipse of the ankle: area, aspect ratio, and orientation. In all muscle activation levels, a significant sex difference was identified in the area of stiffness ellipse as expected from the sex difference in the sagittal and frontal planes. However, no statistical sex difference was observed in the aspect ratio and orientation, which would be due to little differences in major anatomical configurations of the ankle joint between sexes. This study, in combination with future studies investigating sex differences during dynamic tasks (e.g. postural balance and locomotion) would serve as a basis to develop a risk assessment tool and sex-specific training programs for efficient ankle injury prevention or rehabilitation.
The use of visual feedback in gait rehabilitation has been suggested to promote recovery of locomotor function by incorporating interactive visual components. Our prior work demonstrated that visual feedback distortion of changes in step length symmetry entails an implicit or unconscious adaptive process in the subjects’ spatial gait patterns. We investigated whether the effect of the implicit visual feedback distortion would persist at three different walking speeds (slow, self-preferred and fast speeds) and how different walking speeds would affect the amount of adaption. In the visual feedback distortion paradigm, visual vertical bars portraying subjects’ step lengths were distorted so that subjects perceived their step lengths to be asymmetric during testing. Measuring the adjustments in step length during the experiment showed that healthy subjects made spontaneous modulations away from actual symmetry in response to the implicit visual distortion, no matter the walking speed. In all walking scenarios, the effects of implicit distortion became more significant at higher distortion levels. In addition, the amount of adaptation induced by the visual distortion was significantly greater during walking at preferred or slow speed than at the fast speed. These findings indicate that although a link exists between supraspinal function through visual system and human locomotion, sensory feedback control for locomotion is speed-dependent. Ultimately, our results support the concept that implicit visual feedback can act as a dominant form of feedback in gait modulation, regardless of speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.