Nutrients—and by extension biosynthetic capacity—positively impact cell size in organisms throughout the tree of life. In bacteria, cell size is reduced three-fold in response to nutrient starvation or accumulation of the alarmone ppGpp, a global inhibitor of biosynthesis. However, whether biosynthetic capacity as a whole determines cell size or if particular anabolic pathways are more important than others remains an open question. Here we identify fatty acid synthesis as the primary biosynthetic determinant of Escherichia coli size and present evidence supporting a similar role for fatty acids as a positive determinant of size in the Gram-positive bacterium Bacillus subtilis and the single celled eukaryote, Saccharomyces cerevisiae. Altering fatty acid synthesis recapitulated the impact of altering nutrients on cell size and morphology, while defects in other biosynthetic pathways had either a negligible or fatty acid-dependent effect on size. Together our findings support a novel “outside-in” model in which fatty acid availability sets cell envelope capacity, which in turn dictates cell size. In the absence of ppGpp, limiting fatty acid synthesis leads to cell lysis, supporting a role for ppGpp as a linchpin linking expansion of cytoplasmic volume to growth of the cell envelope to preserve cellular integrity.
The nucleotide (p)ppGpp inhibits GTP biosynthesis in the Gram-positive bacterium Bacillus subtilis. Here we examined how this regulation allows cells to grow in the absence of amino acids. We showed that B. subtilis cells lacking (p)ppGpp, due to either deletions or point mutations in all three (p)ppGpp synthetase genes, yjbM, ywaC, and relA, strongly require supplementation of leucine, isoleucine, valine, methionine, and threonine and modestly require three additional amino acids. This polyauxotrophy is rescued by reducing GTP levels. Reduction of GTP levels activates transcription of genes responsible for the biosynthesis of the five strongly required amino acids by inactivating the transcription factor CodY, which represses the ybgE, ilvD, ilvBHC-leuABCD, ilvA, ywaA, and hom-thrCB operons, and by a CodY-independent activation of transcription of the ilvA, ywaA, hom-thrCB, and metE operons. Interestingly, providing the eight required amino acids does not allow for colony formation of (p)ppGpp 0 cells when transitioning from amino acid-replete medium to amino acid-limiting medium, and we found that this is due to an additional role that (p)ppGpp plays in protecting cells during nutrient downshifts. We conclude that (p)ppGpp allows adaptation to amino acid limitation by a combined effect of preventing death during metabolic transitions and sustaining growth by activating amino acid biosynthesis. This ability of (p)ppGpp to integrate a general stress response with a targeted reprogramming of gene regulation allows appropriate adaptation and is likely conserved among diverse bacteria.
Nutrients—and by extension biosynthetic capacity—positively impact cell size in organisms throughout the tree of life. In bacteria, cell size is reduced three-fold in response to nutrient starvation or accumulation of the alarmone ppGpp, a global inhibitor of biosynthesis. However, whether biosynthetic capacity as a whole determines cell size or if particular anabolic pathways are more important than others remains an open question. Utilizing a top-down approach, here we identify flux through lipid synthesis as the primary biosynthetic determinant of Escherichia coli cell size. Altering flux through lipid synthesis recapitulated the impact of altering nutrients on cell size and morphology, while defects in other biosynthetic pathways either did not impact size or altered size in a lipid-dependent manner. Together our findings support a model in which lipid availability dictates cell envelope capacity and ppGpp functions as a linchpin linking surface area expansion with cytoplasmic volume to maintain cellular integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.