Aims: Structural analogues of bisphenol A (BPA), including BPS and BPF, are emerging environmental toxicants as their presence in the environment is rising since new regulatory restrictions were placed on BPA-containing infant products. The adipogenesis-enhancing effect of bisphenols may explain the link between human exposure and metabolic disease; however, underlying molecular pathways remain unresolved. Methods: Adipose-derived progenitors were isolated from mice and exposed to various concentrations of BPS, BPA or BPF before induction of adipogenesis. RNAseq in BPS-exposed progenitors revealed modulation in redox pathways. The role of reactive oxygen species (ROS) was assessed by measuring the degree of adipogenesis in the presence or absence of antioxidants. ROS production and mitochondria function were determined by fluorescent assays. Fat mass was measured by TD-NMR in adult mice exposed to BPS during in utero establishment of the adipocyte progenitor pool, and in adult mice exposed to BPS after weaning. Results: Exposure of progenitors to BPS, BPF, BPA or ROS generators enhanced lipid droplet formation and expression of adipogenic markers after induction of differentiation. ROS was higher in bisphenol-exposed cells, while co-treatment with antioxidants attenuated adipogenesis and abolished the effect of BPS. There was a loss of mitochondria membrane potential in BPS-exposed cells and mitochondria-derived ROS contributed to potentiation of adipogenesis by BPS and its analogues. Male mice exposed to BPS during gestation had higher adiposity, while postnatal exposure had no impact on adiposity in either sex. ROS act as signaling molecules in the regulation of adipocyte differentiation and mediate bisphenol-induced potentiation of adipogenesis.
Background: Exposure to high maternal adiposity in utero is a significant risk factor for the later-life development of metabolic syndrome (MetS), including non-alcoholic fatty liver disease (NAFLD). We have previously shown that high pre-pregnancy adiposity programs adipose tissue dysfunction in the offspring, leading to spillover of fatty acids into the circulation, a key pathogenic event in obesity-associated MetS. Herein, we hypothesized that programming of adipose tissue dysfunction in offspring born to overweight dams increases the risk for developing NAFLD. Results: Females heterozygous for leptin receptor deficiency (Hetdb) were used as a model of high pre-pregnancy adiposity. Wild-type (Wt) offspring born to Hetdb pregnancies gained significantly more body fat following high fat/fructose diet (HFFD) compared to Wt offspring born to Wt dams. HFFD increased circulating free fatty acids (FFA) in male offspring of control dams, while FFA levels were similar in HFFD-fed offspring from Wt dams compared to CD or HFFD-Wt offspring from Hetdb dams. Despite female-specific protection from diet-induced FFA spillover, both male and female offspring from Hetdb dams were more susceptible to diet-induced hepatosteatosis. Lipidomic analysis revealed that CD-offspring of overweight dams had decreased hepatic PUFA levels compared to control offspring. Changes to saturated fatty acids (SFA) and the de novo lipogenic (DNL) index were diet driven; however, there was a significant effect of the intrauterine environment on FA elongation and Capital Greek Δ9 desaturase activity. Conclusion: High maternal adiposity during pregnancy programs a susceptibility to diet-induced hepatosteatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.