Highlights d Large numbers of fluorescent biosensors can be concurrently tracked in barcoded cells d Biosensor activities are synchronized in mixed populations of barcoded cells d Deep learning models facilitate image analysis for biosensor barcoding d Simultaneous biosensor tracking reveals signaling network structures and interactions
Fluorescent biosensors allow for real-time monitoring of biochemical activities in cells, but their multiplexing capacity is severely limited by the availability of spectral space. We overcome this problem by developing a set of barcoding proteins that are spectrally separable from commonly used FRET (fluorescence resonance energy transfer)-based and single-fluorophore biosensors. Mixed populations of barcoded cells expressing different biosensors can be concurrently imaged and computationally unmixed to achieve highly multiplexed tracking of biochemical activities in live cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.