Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis.
Fibrosis and organ failure is a common endpoint for many chronic liver diseases. Much is known about the upstream inflammatory mechanisms provoking fibrosis and downstream potential for tissue remodeling. However, less is known about the transcriptional regulation in vivo governing fibrotic matrix deposition by liver myofibroblasts. This gap in understanding has hampered molecular predictions of disease severity and clinical progression and restricted targets for antifibrotic drug development. In this study, we show the prevalence of SOX9 in biopsies from patients with chronic liver disease correlated with fibrosis severity and accurately predicted disease progression toward cirrhosis. Inactivation of Sox9 in mice protected against both parenchymal and biliary fibrosis, and improved liver function and ameliorated chronic inflammation. SOX9 was downstream of mechanosignaling factor, YAP1. These data demonstrate a role for SOX9 in liver fibrosis and open the way for the transcription factor and its dependent pathways as new diagnostic, prognostic, and therapeutic targets in patients with liver fibrosis.
Tissue fibrosis is a leading cause of mortality and is characterized by excessive protein deposition and altered tissue mechanical properties. In pathological fibrosis, as well as cancer related fibrosis, tissue pericytes and fibroblasts transition from a quiescent to a myofibroblastic phenotype. In vitro models are needed to better understand how these cells are influenced by their local microenvironment. Here, we developed a fibrous network platform to mimic the structure of the extracellular matrix, where fibers consist of cross-linked hyaluronic acid hydrogels with controlled cross-link density and mechanical properties. As a model myofibroblast precursor, primary hepatic stellate cells were seeded onto fibers with either low (soft) or high (stiff) cross-link density, either directly after isolation (quiescent) or following preculture on tissue culture plates (activated). In general, both quiescent and activated cells showed an increase in spreading, alpha smooth muscle actin expression, and the formation of multicellular clusters on soft fibers when compared to stiff fibers. Further, inhibition of alpha smooth muscle actin decreased activation of cells on soft fibers. This is likely due to fiber recruitment in soft fibers that increased local fiber density, whereas stiff fibers resisted recruitment. This work emphasizes the importance of substrate topography on cell–material interactions and shows that tunable fibrous hydrogels are a relevant culture platform for studying fibrosis and mechanotransduction in disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.