An understanding of the molecular bases of the morphogenesis, organization, and functioning of hair cells requires that the genes expressed in these cells be identified and their functions ascertained. After purifying zebrafish hair cells and detecting mRNAs with oligonucleotide microarrays, we developed a subtractive strategy that identified 1,037 hair cell-expressed genes whose cognate proteins subserve functions including membrane transport, synaptic transmission, transcriptional control, cellular adhesion and signal transduction, and cytoskeletal organization. To assess the validity of the subtracted hair-cell data set, we verified the presence of 11 transcripts in inner-ear tissue. Functional evaluation of two genes from the subtracted data set revealed their importance in hair bundles: zebrafish larvae bearing the seahorse and ift 172 mutations display specific kinociliary defects. Moreover, a search for candidate genes that underlie heritable deafness identified a human ortholog of a zebrafish hair-cell gene whose map location is bracketed by the markers of a deafness locus.auditory system ͉ balance ͉ hearing ͉ vestibular system ͉ zebrafish
The zebrafish provides a useful experimental system for investigations of aural development. To permit the controlled expression of transgenes in developing hair cells, we isolated the genomic control regions of the parvalbumin 3a (pvalb3a) and parvalbumin 3b (pvalb3b) genes. Deletion analysis and somatic-cell transgenesis restricted the cis-acting control regions for hair cells to as little as 484 base pairs for pvalb3a and 650 base pairs for pvalb3b. Using both meganuclease-mediated and standard methods, we produced transgenic animals that transmit transgenes through their germ lines. These fish express GFP in hair cells in the inner ear and lateral line. Two stable transgenic lines express GFP prior to hair-bundle formation, so the associated promoter constructs are suitable for manipulating gene expression during bundle development. We additionally identified a transgenic line that offers variable labeling of supporting cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.