Although daytime sleepiness occurred in a large number of residents, especially those with dementia, this sleepiness was not necessarily associated with use of opioids. The risk of opioid-induced sedation may have been managed by strategies including preferential prescribing of paracetamol to residents at risk of sleepiness, opioid discontinuation in residents who experienced sleepiness, and use of low doses of opioids.
Summary. In tlie preseiiec of atropine, i.sokited segments of small and large intestine from rat, mouse, rabhit and guinea-pij; responded to stimidation of intramural nerve fibres with a transient relaxation. On eessation of stimulation illl preparations sliowed rchoinid contractions. In contrast to the relaxation mediated hy perivascnlar .sympathetic nerves, tlie rehixation in response to stimulation of intramural nerves was not hlocked by guancthidine. The intramural inhibitory mechanism was the more resistant to the effects of prolonged eooling. Relaxation was also observed in response to hricf applications of DMPP. It is suggested that this was dm-to the stimulant action of DMPP on intrinsie inhibitory neurones.INTRODUCTION.
BackgroundThe Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action.ResultsThe two forms of the toxin were resolved to 2.7 Å and 2.0 Å respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non-hemolytic toxin (pfam05791). Cry6Aa also shows atypical features compared to other members of this family, including internal repeat sequences and small loop regions within major alpha helices. Trypsin processing was found to result in the loss of some internal sequences while the C-terminal region remains disulfide-linked to the main core of the toxin. Based on the structural similarity of Cry6Aa to other toxins, the mechanism of action of the toxin was probed and its ability to form pores in vivo in Caenorhabditis elegans was demonstrated. A non-toxic mutant was also produced, consistent with the proposed pore-forming mode of action.ConclusionsCry6 proteins are members of the alpha helical pore-forming toxins – a structural class not previously recognized among the Cry toxins of B. thuringiensis and representing a new paradigm for nematocidal and insecticidal proteins. Elucidation of both the structure and the pore-forming mechanism of action of Cry6Aa now opens the way to more detailed analysis of toxin specificity and the development of new toxin variants with novel activities.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-016-0295-9) contains supplementary material, which is available to authorized users.
BackgroundBenzodiazepines are commonly prescribed in residential aged care facilities (RACFs) for their sedative and anxiolytic effects. The objective of this study was to investigate the association between benzodiazepine use and sleep quality in residents of RACFs.MethodsA cross-sectional study involving 383 participants was conducted in six Australian RACFs. Night-time sleep quality, day-time drowsiness and day-time napping behavior were assessed using a validated questionnaire. Logistic regression was used to compute adjusted odds ratios (AORs) and 95% confidence intervals (CIs) for the association between benzodiazepine use and sleep quality. Covariates included pain, dementia severity, depression, insomnia and other sedative use.ResultsOf the 383 residents (mean age 87.5 years, 77.5% female), 96(25.1%) used a benzodiazepine on a regular basis. Residents who used long-acting benzodiazepines on a regular basis had higher night-time sleep quality than non-users (AOR = 4.00, 95%CI 1.06 – 15.15). Residents who used short-acting benzodiazepines on a PRN only basis had longer daytime napping times than non-users (AOR = 1.77, 95%CI 1.01 – 3.08). No benzodiazepine category was associated with day-time drowsiness.ConclusionsThe association between benzodiazepine use and sleep quality is dependent on the half-life and prescribing pattern of the benzodiazepine. Short-acting PRN benzodiazepines were associated with lower night time sleep quality and longer day-time napping compared to long-acting regular benzodiazepines. Longitudinal studies are needed to determine whether these findings reflect channeling of short-acting agents to residents at higher risk of sleep disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.