A new class of nitric oxide (NO)-releasing biodegradable polymers has been synthesized by derivatizing poly(lactic-co-glycolic-co-hydroxymethyl propionic acid) (PLGH) polymers with structurally unique thiol functionalities followed by nitrosation with t-butyl nitrite to yield pendant S-nitrosothiol moieties. The extent of thiolation was found to be dependent on the thiol moiety itself with the efficiency of incorporation as follows: cysteamine > cysteine > homocysteine. Glutathione and penicillamine were not incorporated to any significant extent. The structure and polymer environment associated with the pendant thiol has been related to the physicochemical properties of the resulting polymers. To quantify the extent of S-nitrosation, chemiluminescence and UV-visible spectroscopy techniques were employed in combination. The cysteamine and homocysteine derivatives were found to have the highest extent of nitrosation at 93 AE 3% and 96 AE 3%, respectively, followed by 43 AE 1% for cysteine. Thermal decomposition led to near-complete recovery of NO based upon the quantification of the RSNO formation for each nitrosated polymer. Our ability to exert control over the thiol structure, extent of incorporation and the subsequent nitrosation is crucial to the resulting range of NO release kinetics that were yielded. The functional utility of these materials is demonstrated in that these non-toxic polymers release NO under physiological conditions, have degradation profiles that are appropriate for tissue scaffolds and can be prepared as electrospun nanofibers, commonly used in tissue and bone regeneration applications.
Tygon is a proprietary plasticized poly(vinyl chloride) polymer that is used widely in bioapplications, specifically as extracorporeal circuits. To overcome issues with blood clot formation and infection associated with the failure of these medical devices upon blood contact, we consider a Tygon coating with the ability to release the natural anticlotting and antibiotic agent, nitric oxide (NO), under simulated physiological conditions. These coatings are prepared by incorporating 20 w/w% S-nitrosoglutathione (GSNO) donor into a Tygon matrix. These films release NO on the order of 0.64 ± 0.5 × 10(-10) mol NO cm(-2) min(-1), which mimics the lower end of natural endothelium NO flux. We use a combination of assays to quantify the amount of GSNO that is found intact at different time points throughout the film soak, as well as monitor the total thiol content in the soaking solution due to any analyte that has leached from the polymer film. We find that a burst of GSNO is released from the material surface within 5 min to 1 h of soaking, which only represents 0.25% of the total GSNO contained in the film. After 1 h of film soak, no additional GSNO is detected in the soaking solution. By further considering the total thiol content in solution relative to the intact GSNO, we demonstrate that the amount of GSNO leached from the material into the buffer soaking solution does not contribute significantly to the total NO released from the GSNO-incorporated Tygon film (<10% total NO). Further surface analysis using SEM-EDS traces the elemental S on the material surface, demonstrating that within 5 min -1 h soaking time, 90% of the surface S is removed from the material. Surface wettability and roughness measurements indicate no changes between the GSNO-incorporated films pre- to postsoak that will be significant toward the adsorption of biological components, such as proteins, relative to the presoaked donor-incorporated film. Overall, we demonstrate that, for a 20 w/w% GSNO-incorporated Tygon film, relatively minimal GSNO leaching is experienced, and the lost GSNO is from the material surface. Varying the donor concentration from 5 to 30 w/w% GSNO within the film does not result in significantly different NO release profiles. Additionally, the steady NO flux associated with the system is predominantly due to localized release from the material, and not donor lost to soaking solution. The surface properties of these materials generally imply that they are useful for blood-contacting applications.
Plasma pharmacy is a subset of the broader field of plasma medicine. Although not strictly defined, the term aqueous plasma pharmacy (APP) is used to refer to the generation and distribution of reactive plasma-generated species in an aqueous solution followed by subsequent administration for therapeutic benefits. APP attempts to harness the therapeutic effects of plasma-generated oxidant species within aqueous solution in various applications, such as disinfectant solutions, cell proliferation related to wound healing, and cancer treatment. The subsequent use of plasma-generated solutions in the APP approach facilitates the delivery of reactive plasma species to internal locations within the body. Although significant efforts in the field of plasma medicine have concentrated on employing direct plasma plume exposure to cells or tissues, here we focus specifically on plasma discharge in aqueous solution to render the solution biologically active for subsequent application. Methods of plasma discharge in solution are reviewed, along with aqueous plasma chemistry and the applications for APP. The future of the field also is discussed regarding necessary research efforts that will enable commercialization for clinical deployment.
Herein, we describe the surface modification of an S-nitrosated polymer derivative via H2O plasma treatment, resulting in polymer coatings that maintained their nitric oxide (NO) releasing capabilities, but exhibited dramatic changes in surface wettability. The poly(lactic-co-glycolic acid)-based hydrophobic polymer was nitrosated to achieve a material capable of releasing the therapeutic agent NO. The NO-loaded films were subjected to low-temperature H2O plasma treatments, where the treatment power (20-50 W) and time (1-5 min) were varied. The plasma treated polymer films were superhydrophilic (water droplet spread completely in <100 ms), yet retained 90% of their initial S-nitrosothiol content. Under thermal conditions, NO release profiles were identical to controls. Under buffer soak conditions, the NO release profile was slightly lowered for the plasma-treated materials; however, they still result in physiologically relevant NO fluxes. XPS, SEM-EDS, and ATR-IR characterization suggests the plasma treatment resulted in polymer rearrangement and implantation of hydroxyl and carbonyl functional groups. Plasma treated samples maintained both hydrophilic surface properties and NO release profiles after storage at -18 °C for at least 10 days, demonstrating the surface modification and NO release capabilities are stable over time. The ability to tune polymer surface properties while maintaining bulk properties and NO release properties, and the stability of those properties under refrigerated conditions, represents a unique approach toward creating enhanced therapeutic biopolymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.