Green roofs are a way for cities to mitigate environmental stressors, such as heatwaves and droughts. However, these environmental stressors can adversely affect green roof vegetation, causing challenges for plant growth and survival and subsequently reducing the ability of green roof systems to deliver critical ecosystem services, such as heat mitigation and nutrient cycling. Plant-associated microbes may facilitate the resilience and tolerance of green roof vegetation to climate-associated stress. However, despite their crucial role in plant growth and survival in natural ecosystems, there has been little research on plant-associated microbes in green roof systems. Plant choice on green roofs may also determine which microbes established in green roof growing media, and particular plant-microbial combinations may be more resilient to environmental stress. This project sought to characterize soil microbial community composition on green roofs across New York City with different plant palettes and assess how different combinations of green roof plant species and root-associated microbial assemblages responded to isolated and simultaneous heat and drought treatments. We surveyed green roofs planted with either Sedum species or with a mixedvegetation palette (i.e., wildflowers, grasses, and succulents). We found that mixedvegetation and Sedum green roofs had distinct soil bacterial and fungal communities (p < 0.0001) with a higher relative abundance of mycorrhizal fungi on mixed-vegetation roofs, and higher pathogen loads on Sedum roofs. Concurrently, we conducted a greenhouse experiment in which plants were grown from seed with live inocula collected from the two different types of vegetation on the green roofs we surveyed. Hoch et al. Green Roof Soil Microbial Communities We observed that plant species, soil inoculum, and abiotic stress treatment was correlated with shifts in soil fungal communities. This study demonstrated that soil microbial assemblages on green roofs are linked to the roof vegetation, and that they may facilitate green roof plants' tolerance and resilience to environmental stressors.
Bioswales are a common feature of urban green infrastructure plans for stormwater management. Despite this fact, the nitrogen (N) cycle in bioswales remains poorly quantified, especially during dry weather in the soil, gas, and plant phases. To quantify the nitrogen cycle across seven bioswale sites located in the Bronx, New York City, we measured rates of ammonium and nitrate production in bioswale soils. We also measured soil nitrous oxide gas emissions and plant foliar nitrogen. We found that all mineralized nitrogen underwent nitrification, indicating that the soils were nitrogen-rich, particularly during summer months when nitrogen cycling rates increase, as indicated by higher levels of ammonium in the soil. In comparison to mineralization (0 to 110 g N m−2 y−1), the amounts of nitrogen uptake by the plants (0 to 5 g N m−2 y−1) and of nitrogen in gas emissions from the soils (1 to 10 g N m−2 y−1) were low, although nitrous oxide gas emissions increased in the summer. The bioswales’ greatest influx of nitrogen was via stormwater (84 to 591 g N m−2 y−1). These findings indicate that bioswale plants receive overabundant nitrogen from stormwater runoff. However, soils currently used for bioswales contain organic matter contributing to the urban nitrogen load. Thus, bioswale designs should use less nitrogen rich soils and minimize fertilization for lower nitrogen runoff.
Bioswales and other forms of green infrastructure can be effective means to reduce environmental stresses in urban ecosystems; however, few studies have evaluated the ecology of these systems, or the role that plant selection and microbial assembly play in their function. For the current study, we examined the relationship between plant transpiration rates for five commonly planted herbaceous species in three bioswales in New York City, as well as bioswale soil microbial composition and soil chemistry. Soils were sampled near individual plants, with distinction made between upper (bioswale inlet) and lower slopes (bioswale outlet). We found high variation in transpiration rates across species, and that Nepeta × faassenii was the highest conductor (13.65 mmol H2O m–2s–1), while Panicum virgatum was the lowest conductor (2.67 mmol H2O m–2s–1) (p < 0.001). There was significant variation in percent N of leaves and soil, which did not relate to the higher water conductance in bioswales. Significantly higher C, N, and water content on the high end of bioswale slopes suggest storm water run-off is mostly absorbed on the inlet side. Bacterial and fungal communities were significantly clustered by bioswale and by plant species within each bioswale implying there are micro-environmental controls on the soil microbial composition, and that plant composition matters for microbial assemblages within bioswales. Plants with higher transpiration rates were associated with greater fungal and bacterial diversity at the level of the bioswale and at scale of the individual plant, suggesting a possible link between plant physiological traits and soil microbial communities. These data suggest that the specific plant palette selected for planting bioswales can have deterministic effects on the surrounding microbial communities which may further influence functions such as transpiration and nutrient cycling. These results may have implications for bioswale management to improve urban water quality and reduce stress on sewage systems after storm events by revising plant species palette selection based on the functional consequences of plant-microbial associations in engineered green infrastructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.