Blends of poly(N-phenyl-2-(2‘-thienyl)-5-(5‘‘-vinyl-2‘‘-thienyl)pyrrole) (PSNPhS) and poly(N-vinylcarbazole) (PVK) were prepared in mass ratios of 1:4, 3:2, and 4:1. Their electrochromic properties were characterized using cyclic voltammetry, in situ spectroelectrochemistry, and spectrocolorimetry. Solid-state electrochromic devices were prepared using ITO/Mylar substrates and a solid polymer electrolyte, with cast films of the polymer blends deposited on the working electrode. The color contrasts of these devices were measured by spectrocolorimetry conforming to the Commission International de l'Eclairage (CIE) methods. The observed color changes in the p-doped state of the devices were compared using the CIE color coordinate values and correlate (R 2 = 0.97) with the quantity of PSNPhS present in the blend. These combinations of PSNPhS and PVK yielded colors similar to those of natural vegetation and soils, as desired.
Cytomegaloviruses manipulate the host chemokine/receptor axis by altering cellular chemokine expression and by encoding multiple chemokines and chemokine receptors. Similar to human cytomegalovirus (HCMV), rat cytomegalovirus (RCMV) encodes multiple CC chemokine-analogous proteins, including r129 (HCMV UL128 homologue) and r131 (HCMV UL130 and MCMV m129/130 homologues). Although these proteins play a role in CMV entry, their function as chemotactic cytokines remains unknown. In the current study, we examined the role of the RCMV chemokine r129 in promoting cellular migration and in accelerating transplant vascular sclerosis (TVS) in our rat heart transplant model. We determined that r129 protein is released into culture supernatants of infected cells and is expressed with late viral gene kinetics during RCMV infection and highly expressed in heart and salivary glands during in vivo rat infections. Using the recombinant r129 protein, we demonstrated that r129 induces migration of lymphocytes isolated from rat peripheral blood, spleen, and bone marrow and from a rat macrophage cell line. Using antibody-mediated cell sorting of rat splenocytes, we demonstrated that r129 induces migration of naïve/central memory CD4؉ T cells. Through ligand-binding assays, we determined that r129 binds rat CC chemokine receptors CCR3, CCR4, CCR5, and CCR7. In addition, mutational analyses identified functional domains of r129 resulting in recombinant proteins that fail to induce migration (r129-⌬NT and -C31A) or alter the chemotactic ability of the chemokine (r129-F43A). Two of the mutant proteins (r129-C31A and -⌬NT) also act as dominant negatives by inhibiting migration induced by wild-type r129. Furthermore, infection of rat heart transplant recipients with RCMV containing the r129-⌬NT mutation prevented CMV-induced acceleration of TVS. Together our findings indicate that RCMV r129 is highly chemotactic, which has important implications during RCMV infection and reactivation and acceleration of TVS.
Kaposi sarcoma herpesvirus (KSHV/HHV-8) is a B cell tropic human pathogen, which is present in vivo in monotypic immunoglobulin λ (Igλ) light chain but polyclonal B cells. In the current study, we use cell sorting to infect specific B cell lineages from human tonsil specimens in order to examine the immunophenotypic alterations associated with KSHV infection. We describe IL-6 dependent maturation of naïve B lymphocytes in response to KSHV infection and determine that the Igλ monotypic bias of KSHV infection in vivo is due to viral induction of BCR revision. Infection of immunoglobulin κ (Igκ) naïve B cells induces expression of Igλ and isotypic inclusion, with eventual loss of Igκ. We show that this phenotypic shift occurs via re-induction of Rag-mediated V(D)J recombination. These data explain the selective presence of KSHV in Igλ B cells in vivo and provide the first evidence that a human pathogen can manipulate the molecular mechanisms responsible for immunoglobulin diversity.
Simian-human immunodeficiency viruses (SHIVs) have been utilized to test vaccine efficacy and characterize mechanisms of viral transmission and pathogenesis. However, the majority of SHIVs currently available have significant limitations in that they were developed using sequences from chronically HIV-infected individuals or uncommon HIV subtypes or were optimized for the macaque model by serially passaging the engineered virusin vitroorin vivo. Recently, a newly developed SHIV, SHIV.C.CH505.375H.dCT (SHIV.CH505), which incorporates vpu-env (gp140) sequences from a transmitted/founder HIV-1 subtype C strain, was shown to retain attributes of primary HIV-1 strains. However, a comprehensive analysis of the immunopathology that results from infection with this virus, especially in critical tissue compartments like the intestinal mucosa, has not been completed. In this study, we evaluated the viral dynamics and immunopathology of SHIV.CH505 in rhesus macaques. In line with previous findings, we found that SHIV.CH505 is capable of infecting and replicating efficiently in rhesus macaques, resulting in peripheral viral kinetics similar to that seen in pathogenic SIV and HIV infection. Furthermore, we observed significant and persistent depletions of CCR5+and CCR6+CD4+T cells in mucosal tissues, decreases in CD4+T cells producing Th17 cell-associated cytokines, CD8+T cell dysfunction, and alterations of B cell and innate immune cell function, indicating that SHIV.CH505 elicits intestinal immunopathology typical of SIV/HIV infection. These findings suggest that SHIV.CH505 recapitulates the early viral replication dynamics and immunopathogenesis of HIV-1 infection of humans and thus can serve as a new model for HIV-1 pathogenesis, treatment, and prevention research.IMPORTANCEThe development of chimeric SHIVs has been instrumental in advancing our understanding of HIV-host interactions and allowing forin vivotesting of novel treatments. However, many of the currently available SHIVs have distinct drawbacks and are unable to fully reflect the features characteristic of primary SIV and HIV strains. Here, we utilize rhesus macaques to define the immunopathogenesis of the recently developed SHIV.CH505, which was designed without many of the limitations of previous SHIVs. We observed that infection with SHIV.CH505 leads to peripheral viral kinetics and mucosal immunopathogenesis comparable with those caused by pathogenic SIV and HIV. Overall, these data provide evidence of the value of SHIV.CH505 as an effective model of SIV/HIV infection and an important tool that can be used in future studies, including preclinical testing of new therapies or prevention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.