A grand challenge from the wind energy industry is to provide reliable forecasts on mountain winds several hours in advance at microscale (∼100 m) resolution. This requires better microscale wind-energy physics included in forecasting tools, for which field observations are imperative. While mesoscale (∼1 km) measurements abound, microscale processes are not monitored in practice nor do plentiful measurements exist at this scale. After a decade of preparation, a group of European and U.S. collaborators conducted a field campaign during 1 May–15 June 2017 in Vale Cobrão in central Portugal to delve into microscale processes in complex terrain. This valley is nestled within a parallel double ridge near the town of Perdigão with dominant wind climatology normal to the ridges, offering a nominally simple yet natural setting for fundamental studies. The dense instrument ensemble deployed covered a ∼4 km × 4 km swath horizontally and ∼10 km vertically, with measurement resolutions of tens of meters and seconds. Meteorological data were collected continuously, capturing multiscale flow interactions from synoptic to microscales, diurnal variability, thermal circulation, turbine wake and acoustics, waves, and turbulence. Particularly noteworthy are the extensiveness of the instrument array, space–time scales covered, use of leading-edge multiple-lidar technology alongside conventional tower and remote sensors, fruitful cross-Atlantic partnership, and adaptive management of the campaign. Preliminary data analysis uncovered interesting new phenomena. All data are being archived for public use.
Abstract. Wakes from wind farms can extend over 50 km downwind in stably stratified conditions. These wakes can undermine power production at downwind turbines, adversely impacting revenue. As such, wind farm wake impacts must be considered in wind resource assessments, especially in regions of dense wind farm development. The open-source Weather Research and Forecasting (WRF) numerical weather prediction model includes a wind farm parameterization to estimate wind farm wake effects, but model configuration choices can influence the resulting predictions of wind farm wakes. These choices include vertical resolution, horizontal resolution, and whether or not to include the addition of turbulent kinetic energy generated by the rotating wind turbines. Despite the sensitivity to model configuration, no clear guidance currently exists for these options. Here we compare simulated wind farm wakes produced by varying model configurations with meteorological observations near a land-based wind farm in flat terrain over several diurnal cycles. A WRF configuration comprised of horizontal resolutions of 3 km or 1 km paired with a vertical resolution of 10 m provides the most accurate representation of wind farm wake effects, such as the correct surface warming and elevated wind speed deficit. The inclusion of turbine-generated turbulence is also critical to produce accurate surface warming and should not be omitted.
On 10 August 2014, a gravity wave complex generated by convective outflow propagated across much of Oklahoma. The four-dimensional evolution of the wave complex was analyzed using a synthesis of near-surface and vertical observations from the Oklahoma Mesonet and Atmospheric Radiation Measurement (ARM) Southern Great Plains networks. Two Atmospheric Emitted Radiance Interferometers (AERI)—one located at the ARM SGP central facility in Lamont, Oklahoma, and the other in Norman, Oklahoma—were used in concert with a Doppler wind lidar (DWL) in Norman to determine the vertical characteristics of the wave complex. Hydraulic theory was applied to the AERI-derived observations to corroborate the observationally derived wave characteristics. It was determined that a bore-soliton wave packet initially formed when a density current interacted with a nocturnal surface-based inversion and eventually propagated independently as the density current became diffuse. The soliton propagated within an elevated inversion, which was likely induced by ascending air at the leading edge of the bore head. Bore and density current characteristics derived from the observations agreed with hydraulic theory estimates to within a relative difference of 15%. While the AERI did not accurately resolve the postbore elevated inversion, an error propagation analysis suggested that uncertainties in the AERI and DWL observations had a negligible influence on the findings of this study.
Abstract. Wakes from wind farms can extend over 50 km downwind in stably stratified conditions. These wakes can undermine power production at downwind turbines, adversely undermining revenue. As such, wind farm wake impacts must be considered in wind resource assessments, especially in regions of dense wind farm development. The open-source Weather Research and Forecasting (WRF) numerical weather prediction model includes a wind farm parameterization to estimate wind farm wake effects, but model configuration choices can influence the resulting predictions of wind farm wakes. These choices include vertical resolution, horizontal resolution, and whether or not to include the addition of turbulent kinetic energy generated by the spinning wind turbines. Despite the sensitivity to model configuration, no clear guidance currently exists for these options. Here we compare simulated wind farm wakes produced by varying model configurations with observations from in situ meteorological observations near an onshore wind farm in flat terrain over several diurnal cycles. A WRF configuration comprised of horizontal resolutions of 3 km or 1 km paired with a vertical resolution of 10 m provides the most accurate representation of wind farm wake effects, such as the correct surface warming and elevated wind speed deficit. The inclusion of turbine-generated turbulence is also critical to produce accurate surface warming and should not be omitted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.