Elevated expression of neuroinflammatory factors in the central nervous system (CNS) contributes to the cognitive impairment in CNS disorders such as injury, disease and neurodegenerative disorders. However, information on the role of specific neuroimmune factors in normal and abnormal CNS function is limited. In this study, we investigated the effects of chronic exposure to the chemokine CCL2 on hippocampal synaptic function at the Schaffer collateral-CA1 synapse, a synapse that is known to play an important role in cognitive functions such as memory and learning. Synaptic function was measured in vitro using hippocampal slices obtained from transgenic mice that express elevated levels of CCL2 in the CNS through astrocyte expression and their non-transgenic littermate controls. Extracellular field potential electrophysiological recordings showed a significant reduction in the magnitude of synaptic responses in hippocampal slices from the CCL2 transgenic mice compared with slices from non-transgenic littermate controls. Two forms of short-term synaptic plasticity (post-tetanic potentiation and short-term potentiation) thought to be important cellular mechanisms of short-term memory were enhanced in hippocampal slices from CCL2 transgenic mice compared to non-transgenic hippocampal slices, whereas long-term synaptic plasticity (LTP), which is critical to long-term memory formation, was not altered. Western blot analysis of hippocampus from the CCL2 transgenic mice and non-transgenic mice showed no change in level of neuronal specific enolase, a neuronal specific protein, GFAP, an astrocyte specific protein, and several synaptic proteins compared with non-transgenic littermate controls. These results show that CCL2, which is known to be chronically produced at elevated levels within the CNS in a number of CNS disorders, can significantly alter hippocampal function and implicate a role for CCL2 in the cognitive dysfunction associated with these CNS disorders.
A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including persistent changes in CNS function that contribute to cognitive dysfunction and the development of alcohol dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.