The aim of this work is to give an overview of existing methods and to introduce three new methods for the determination of the Dendrite Coherency Point (DCP) for AlSi10Mg alloys, as well as to compare the acquired values of DCP based on a thermal analysis and on the analysis of cooling curves working with only one thermocouple. Additionally, the impact of alloying and contaminant elements on the DCP will be also studied. The first two proposed methods employ the higher order derivatives of the cooling curves. The DCP was determined as the crossing point of the second and third derivative curves plotted versus time (method 1) or that of the temperature (method 2) with the zero line just after the maximum liquidus temperature. The third proposed method is based on the determination of the crossing point of the third solid fraction derivative curve with the zero line, corresponding to a minimum of the second derivative. A Taguchi design for the experiments was developed to study the DCP values in the AlSi10Mg alloy. The DCP temperature values of the test alloys were compared with the DCP temperatures predicted by the previous methods and the influence of the major and minor alloying elements and contaminants over the DCP. The new processes obtained a correlation factor r2 from 0.954 and 0.979 and a standard deviation from 1.84 to 2.6 °C. The obtained correlation values are higher or similar than those obtained using previous methods with an easier way to define the DCP, allowing for a better automation of the accuracy of DCP determination. The use of derivative curves plotted versus temperature employed in the last two proposed methods, where the test samples did not have an influence over the registration curves, is proposed to have a better accuracy than those of the previously described methods.
The aim of this work is to determine the Solid Fraction (SF) at the rigidity point (FRP) by applying advanced thermal analysis techniques. The variation of the FRP value is important to explain the solidification behavior and the presence or absence of defects in aluminum alloys. As the final alloy composition plays a key role on obtained properties, the influence of major and minor alloying elements on FRP has been studied. A Taguchi design of experiments and a previously developed calculating method, based on the application of high rank derivatives has been employed to determinate first the rigidity point temperature (RPT) and after the corresponding FRP for AlSi10Mg alloys. A correlation factor of r2 of 0.81 was obtained for FRP calculation formula in function of the alloy composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.