Objective Application of 3-iodothyronamine (3-T1AM) results in decreased body temperature and body weight in rodents. The trace amine-associated receptor (TAAR) 1, a family A G protein-coupled receptor, is a target of 3-T1AM. However, 3-T1AM effects still persist in mTaar1 knockout mice, which suggest so far unknown further receptor targets that are of physiological relevance. TAAR5 is a highly conserved TAAR subtype among mammals and we here tested TAAR5 as a potential 3-T1AM target. First, we investigated mouse Taar5 (mTaar5) expression in several brain regions of the mouse in comparison to mTaar1. Secondly, to unravel the full spectrum of signaling capacities, we examined the distinct Gs-, Gi/o-, G12/13-, Gq/11- and MAP kinase-mediated signaling pathways of mouse and human TAAR5 under ligand-independent conditions and after application of 3-T1AM. We found overlapping localization of mTaar1 and mTaar5 in the amygdala and ventromedial hypothalamus of the mouse brain. Second, the murine and human TAAR5 (hTAAR5) display significant basal activity in the Gq/11 pathway but show differences in the basal activity in Gs and MAP kinase signaling. In contrast to mTaar5, 3-T1AM application at hTAAR5 resulted in significant reduction in basal IP3 formation and MAP kinase signaling. In conclusion, our data suggest that the human TAAR5 is a target for 3-T1AM, exhibiting inhibitory effects on IP3 formation and MAP kinase signaling pathways, but does not mediate Gs signaling effects as observed for TAAR1. This study also indicates differences between TAAR5 orthologs with respect to their signaling profile. In consequence, 3-T1AM-mediated effects may differ between rodents and humans.
Obesity is one of the most challenging global health problems. One key player in energy homeostasis is the melanocortin-4 receptor (MC4R), which is a family A G-protein-coupled receptor (GPCR). It has recently been shown that MC4R has the capacity to form homo-or heterodimers. Dimerization of GPCRs is of great importance for signaling regulation, with major pharmacological implications. Unfortunately, not enough is yet known about the detailed structural properties of MC4R dimers or the functional consequences of receptor dimerization. Our goal, therefore, was to explore specific properties related to MC4R dimerization. First, we aimed to induce the dissociation of dimers to monomers and to compare the functional parameters of wild-type and MC4R variants. To inhibit homodimerization, we designed MC4R chimeras with the cannabinoid-1 receptor, a receptor that does not interact with MC4R. Indeed, we identified several substitutions in the intracellular loop 2 (ICL2) and adjacent regions of transmembrane helix 3 (TMH3) and TMH4 that lead to partial dimer dissociation. Interestingly, the capacity for signaling activity was generally increased in these MC4R variants, although receptor expression remained unchanged. This increase in activity for dissociated receptors might indicate a link between receptor dimerization and signaling capacity. Moreover, dimer dissociation was also observed in a naturally occurring activating MC4R mutation in ICL2. Taken together, this study provides new information on the structural prerequisites for MC4R dimerization and identifies an approach to induce the dissociation of MC4R dimers. This might be useful for further investigation of pharmacological properties.
Most in vivo effects of 3-iodothyronamine (3-T1AM) have been thus far thought to be mediated by binding at the trace amine-associated receptor 1 (TAAR1). Inconsistently, the 3-T1AM-induced hypothermic effect still persists in Taar1 knockout mice, which suggests additional receptor targets. In support of this general assumption, it has previously been reported that 3-T1AM also binds to the a-2A-adrenergic receptor (ADRA2A), which modulates insulin secretion. However, the mechanism of this effect remains unclear. We tested two different scenarios that may explain the effect: the sole action of 3-T1AM at ADRA2A and a combined action of 3-T1AM at ADRA2A and TAAR1, which is also expressed in pancreatic islets. We first investigated a potential general signaling modification using the label-free EPIC technology and then specified changes in signaling by cAMP inhibition and MAPKs (ERK1/2) determination. We found that 3-T1AM induced G i/o activation at ADRA2A and reduced the norepinephrine (NorEpi)-induced MAPK activation. Interestingly, in ADRA2A/TAAR1 hetero-oligomers, application of NorEpi resulted in uncoupling of the G i/o signaling pathway, but it did not affect MAPK activation. However, 3-T1AM application in mice over a period of 6 days at a daily dose of 5 mg/kg had no significant effects on glucose homeostasis. In summary, we report an agonistic effect of 3-T1AM on the ADRA2A-mediated G i/o pathway but an antagonistic effect on MAPK induced by NorEpi. Moreover, in ADRA2A/TAAR1 hetero-oligomers, the capacity of NorEpi to stimulate G i/o signaling is reduced by co-stimulation with 3-T1AM. The present study therefore points to a complex spectrum of signaling modification mediated by 3-T1AM at different G protein-coupled receptors.Key Words " G protein-coupled receptor " adrenergic receptor
Aminoglycoside-mediated read-through of stop codons was recently demonstrated for a variety of diseases in vitro and in vivo. About 30 percent of human genetic diseases are the consequence of nonsense mutations. Nonsense mutations in obesity-associated genes like the melanocortin 4 receptor (MC4R), expressed in the hypothalamus, show the impact of premature stop codons on energy homeostasis. Therefore, the MC4R could be a potential pharmaceutical target for obesity treatment and targeting MC4R stop mutations could serve as proof of principle for nonsense mutations in genes expressed in the brain. We investigated four naturally occurring nonsense mutations in the MC4R (W16X, Y35X, E61X, Q307X) located at different positions in the receptor for aminoglycosidemediated functional rescue in vitro. We determined localization and amount of full-length protein before and after aminoglycoside treatment by fluorescence microscopy, cell surface and total enzyme linked immunosorbent assay (ELISA). Signal transduction properties were analyzed by cyclic adenosine monophosphate (cAMP) assays after transient transfection of MC4R wild type and mutant receptors into COS-7 cells. Functional rescue of stop mutations in the MC4R is dependent on: (i) triplet sequence of the stop codon, (ii) surrounding sequence, (iii) location within the receptor, (iv) applied aminoglycoside and ligand. Functional rescue was possible for W16X, Y35X (N-terminus), less successful for Q307X (C-terminus) and barely feasible for E61X (first transmembrane domain). Restoration of full-length proteins by PTC124 could not be confirmed. Future pharmaceutical applications must consider the potency of aminoglycosides to restore receptor function as well as the ability to pass the blood-brain barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.