These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion.
International audienceThe classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127(-) and CD127(+) early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127(-) and CD127(+) ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127(-) ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127(+) ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis
Purpose-To prospectively demonstrate the feasibility of using indocyanine green, a nearinfrared (NIR) fluorophore at the minimum dose needed for noninvasive optical imaging of lymph nodes (LNs) in breast cancer patients undergoing sentinel lymph node mapping (SLNM).Materials and Methods-Informed consent was obtained from 24 women (age range, 30-85 years) who received intradermal subcutaneous injections of 0.31-100 μg indocyanine green in the breast in this IRB-approved, HIPAA-compliant, dose escalation study to find the minimum microdose for imaging. The breast, axilla, and sternum were illuminated with NIR light and the fluorescence generated in the tissue was collected with an NIR-sensitive intensified chargedcoupled device. Lymphoscintigraphy was also performed. Resected LNs were evaluated for the presence of radioactivity, blue dye accumulation, and fluorescence. The associations between the resected LNs that were fluorescent and (a) the time elapsed between NIR fluorophore administration and resection and (b) the dosage of NIR fluorophores were tested with the Spearman rank and Pearson product moment correlation tests, respectively.Results-Lymph imaging consistently failed with indocyanine green microdosages between 0.31 and 0.77 μg. When indocyanine green dosages were 10 μg or higher, lymph drainage pathways from the injection site to LNs were imaged in eight of nine women; lymph propulsion was observed in seven of those eight. When propulsion in the breast and axilla regions was present, the mean apparent velocities ranged from 0.08 to 0.32 cm/sec, the time elapsed between "packets" of propelled fluid varied from 14 to 92 seconds. In patients who received 10 μg of indocyanine green or more, a weak negative correlation between the fluorescence status of resected LNs and the time © RSNA, 2008 Address correspondence to E.M.S. (evas@bcm.tmc.edu). Supplemental material: http://radiology.rsnajnls.org/cgi/content/full/2463070962/DC1 Author contributions:Guarantor of integrity of entire study, E.M.S.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; manuscript final version approval, all authors; literature research, all authors; clinical studies, all authors; statistical analysis, all authors; and manuscript editing, all authors See Materials and Methods for pertinent disclosures. NIH Public Access Author ManuscriptRadiology. Author manuscript; available in PMC 2011 September 3. Conclusion-NIR fluorescence imaging of lymph function and LNs is feasible in humans at microdoses that would be needed for future molecular imaging of cancer-positive LNs.Currently, standard-of-care staging of breast cancer requires surgical resection of the first tumor-draining, or sentinel, lymph node (SLN) for subsequent pathologic examination (1). If the SLN is cancerous, then additional lymph nodes (LNs) in the axillary basin are subsequently removed for accurate staging. Recently, the a...
Functional lymphatic imaging was demonstrated in the abdomen and anterior hindlimb of anesthetized, intact Yorkshire swine by using near-infrared (NIR) fluorescence imaging following intradermal administration of 100-200 microl of 32 microM indocyanine green (ICG) and 64 microM hyaluronan NIR imaging conjugate to target the lymph vascular endothelial receptor (LYVE)-1 on the lymph endothelium. NIR fluorescence imaging employed illumination of 780 nm excitation light ( approximately 2 mW/cm(2)) and collection of 830 nm fluorescence generated from the imaging agents. Our results show the ability to image the immediate trafficking of ICG from the plexus, through the vessels and lymphangions, and to the superficial mammary, subiliac, and middle iliac lymph nodes, which were located as deep as 3 cm beneath the tissue surface. "Packets" of ICG-transited lymph vessels of 2-16 cm length propelled at frequencies of 0.5-3.3 pulses/min and velocities of 0.23-0.75 cm/s. Lymph propulsion was independent of respiration rate. In the case of the hyaluronan imaging agent, lymph propulsion was absent as the dye progressed immediately through the plexus and stained the lymph vessels and nodes. Lymph imaging required 5.0 and 11.9 microg of ICG and hyaluronan conjugate, respectively. Our results suggest that microgram quantities of NIR optical imaging agents and their conjugates have a potential to image lymph function in patients suffering from lymph-related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.