A novel role of the dihydroorotatedehydrogenase (DHODH) inhibitor leflunomide as a potential anti-melanoma therapy was recently reported (Nature 471∶518-22, 2011). We previously reported that leflunomide strongly activates the transcriptional activity of the Aryl Hydrocarbon Receptor (AhR). We therefore tested whether the AhR regulates the anti-proliferative effects of leflunomide in melanoma. We first evaluated the expression of AhR in melanoma cells and found that AhR is highly expressed in A375 melanoma as well as in several other cancer cell types. To evaluate whether AhR plays a role in regulating the growth inhibitory effects of leflunomide in A375 cells, we generated a stable cell line from parental A375 cells expressing a doxycycline (DOX) inducible AhR shRNA. Using these cells in the absence or presence of DOX (normal AhR levels or AhR-knockdown, respectively) we found that the anti-proliferative effects of leflunomide, but not its metabolite A771726, were strongly dependent upon AhR expression. It has been well established that supplementation of cells with exogenous uridine completely rescues the anti-proliferative effects due to DHODH inhibition. Thus, we performed uridine rescue experiments in A375 cells to determine whether the anti-proliferative effects of leflunomide are solely due to DHODH inhibition as previously reported. Interestingly, saturating levels of uridine only modestly rescued A375 cells from the anti-proliferative effects of both leflunomide and A771726, indicating additional mechanism(s), apart from DHODH inhibition are responsible for the anti-proliferative effects of leflunomide in melanoma cells. Uridine also did not rescue MDA-MB-435S melanoma cell proliferation after leflunomide treatment. Our results reveal that the AhR is a molecular target of leflunomide and support the feasibility of the clinical application of leflunomide for treating melanoma. Furthermore, analysis of expression data from 967 cancer cell lines revealed that AhR is expressed in multiple different cancer types supporting the intriguing possibility of targeting the AhR for therapy in a number of cancers.
Objectives: Trends over time in the United States show success in rebalancing long-term services and supports (LTSS) towards increased home and community-based services (HCBS) relative to institutionalized care. However, the diffusion and utilization of HCBS may be inequitable across rural and urban residents. We sought to identify potential disparities in rural HCBS access and utilization, and to elucidate factors associated with these disparities.
Design:We used qualitative interviews with key informants to explore and identify potential disparities and their associated supply-side factors.
Setting and participants:We interviewed three groups of healthcare stakeholders (Medicaid administrators, service agency managers and staff, and patient advocates) from 14 states (n = 40).Measures: Interviews were conducted using a semi-structured interview guide, and data were thematically coded using a standardized codebook.Results: Stakeholders identified supply-side factors inhibiting rural HCBS access, including limited availability of LTSS providers, inadequate transportation services, telecommunications barriers, threats to business viability, and challenges to caregiving workforce recruitment and retention. Stakeholders perceived that rural persons have a greater reliance on informal caregiving supports, either as a cultural preference or as compensation for the dearth of HCBS.
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351). As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS) to search for novel ligands. Here, we have developed an “agonist-optimized” homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307–329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.