Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km 2 ) has declined substantially:& 2014 The Author(s) Published by the Royal Society. All rights reserved.on May 10, 2018 http://rspb.royalsocietypublishing.org/ Downloaded from only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education.
Urbanization causes severe environmental degradation and continues to increase in scale and intensity around the world, but little is known about how we should design cities to minimize their ecological impact. With a sprawling style of urban development, low intensity impact is spread across a wide area, and with a compact form of development intense impact is concentrated over a small area; it remains unclear which of these development styles has a lower overall ecological impact. Here, we compare the consequences of compact and sprawling urban growth patterns on bird distributions across the city of Brisbane, Australia. We predicted the impact on bird populations of adding 84,642 houses to the city in either a compact or sprawling design using statistical models of bird distributions. We show that urban growth of any type reduces bird distributions overall, but compact development substantially slows these reductions at the city scale. Urban-sensitive species particularly benefited from compact development at the city scale because large green spaces were left intact, whereas the distributions of nonnative species expanded as a result of sprawling development. As well as minimizing ecological disruption, compact urban development maintains human access to public green spaces. However, backyards are smaller, which impacts opportunities for people to experience nature close to home. Our results suggest that cities built to minimize per capita ecological impact are characterized by high residential density, with large interstitial green spaces and small backyards, and that there are important trade-offs between maintaining city-wide species diversity and people's access to biodiversity in their own backyard.
Land-use change due to anthropogenic development is pervasive across the globe and commonly associated with negative consequences for biodiversity. While land-use change has been linked to shifts in the behavior and habitatuse patterns of wildlife species, little is known about its influence on animal population dynamics, despite the relevance of such information for conservation. We conducted the first broad-scale investigation correlating temporal patterns of land-use change with the demographic rates of mule deer, an iconic species in the western United States experiencing wide-scale population declines. We employed a unique combination of long-term (1980-2010) data on residential and energy development across western Colorado, in conjunction with congruent data on deer recruitment, to quantify annual changes in land-use and correlate those changes with annual indices of demographic performance. We also examined annual variation in weather conditions, which are well recognized to influence ungulate productivity, and provided a basis for comparing the relative strength of different covariates in their association with deer recruitment. Using linear mixed models, we found that increasing residential and energy development within deer habitat were correlated with declining recruitment rates, particularly within seasonal winter ranges. Residential housing had two times the magnitude of effect of any other factor we investigated, and energy development had an effect size similar to key weather variables known to be important to ungulate dynamics. This analysis is the first to correlate a demographic response in mule deer with residential and energy development at large spatial extents relevant to population performance, suggesting that further increases in these development types on deer ranges are not compatible with the goal of maintaining highly productive deer populations. Our results underscore the significance of expanding residential development on mule deer populations, a factor that has received little research attention in recent years, despite its rapidly increasing footprint across the landscape.
ABSTRACT. Experiences of nature contribute to human health and well-being, yet as the world's population continues to concentrate in towns and cities there is mounting concern that these experiences are diminishing. Despite this, little is known about how we can maintain experiences of nature as cities grow. Here, we quantify how people's opportunities to experience nature might change with future urban growth in the city of Brisbane, Australia. We simulated the addition of 84,642 houses under compact and sprawling growth scenarios and modeled changes in people's opportunities to experience nature by estimating changes in backyard size, public green space provision, and bird species richness close to households. We discovered that the form of urban growth could strongly influence people's opportunities to experience nature in a way that is highly nonrandom across the socioeconomic gradient. Under a sprawling pattern of development, with low residential densities and few interstitial green spaces, our models suggest severe declines in access to public green space and bird species richness around people's homes. These declines are predicted to be concentrated in socioeconomically disadvantaged areas of the city. Compact development leads to greater reductions in backyard size, but smaller declines in access to public green space and bird species richness. Our results point to a difficult trade-off; residential infill will maintain larger green spaces and higher overall bird diversity but reduce backyard sizes, impacting people's opportunities to experience nature in a different way. Careful planning is needed to balance the availability of public and private urban green spaces to ensure that the opportunities for people to experience nature are maintained as urbanization continues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.