ABSTRACT:The biotransformation of prasugrel to R-138727 (2- [
Abemaciclib is a selective and potent small-molecule inhibitor of cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) being investigated for treatment of refractory hormone-receptor positive (HR+) advanced or metastatic breast cancer. In vitro, CYP3A is responsible for >99% of the CYP-mediated microsomal metabolism of abemaciclib and its active metabolites. Three clinical studies evaluated the disposition and metabolism and drug interaction potential of abemaciclib in the presence of a strong CYP3A-inducer, rifampin, or a strong CYP3A-inhibitor, clarithromycin. Abemaciclib disposition and metabolism were determined following a single oral 150 mg dose of [14C]-abemaciclib in healthy subjects (N = 6). In the rifampin interaction study, abemaciclib was administered as a single oral 200 mg dose in healthy subjects (N = 24) on 2 occasions: alone on Day 1 of Period 1 and in combination with 600 mg rifampin on Day 7 of Period 2, after 6 days of rifampin once daily (QD) dosing; rifampin continued QD for 7 days after abemaciclib. In the clarithromycin interaction study, abemaciclib was administered as a single oral 50 mg dose in patients with advanced cancer (N = 26) on 2 occasions: alone in Period 1 and on Day 5 of clarithromycin dosing (500 mg BID) in Period 2 followed by an additional 7 days of clarithromycin. Abemaciclib was extensively metabolized, with less than 10% of parent drug recovered unchanged in feces. Parent drug and 3 active metabolites; (LSN2839567 [M2], LSN3106729 [M18], and LSN3106726 [M20]) were detected in plasma. The mean t1/2 in healthy subjects was 29.0, 104.0, 55.9, and 43.1 hours for abemaciclib, M2, M18, and M20, respectively. Coadministration with rifampin compared to abemaciclib alone decreased abemaciclib AUC(0-?) and Cmax by 95% and 92%, respectively, and decreased AUC(0-?) and Cmax of total active species (abemaciclib + M2 + M18+ M20) by 77% and 45%, respectively. Coadministration with clarithromycin compared to abemaciclib alone increased abemaciclib AUC(0-?) and Cmax by 237% and 30%, respectively; and increased the total active species AUC(0-?) by 119% and decreased Cmax by 7%. The mean abemaciclib t1/2 was prolonged from 28.8 to 63.6 hours. No clinically significant safety concerns were observed following single doses of abemaciclib in healthy subjects or in patients with advanced cancer based on vital signs, clinical laboratory evaluations, and electrocardiogram data. The human absorption, distribution, metabolism and excretion study indicated that abemaciclib was cleared primarily by hepatic metabolism, and the clinical drug-drug interaction studies with strong CYP3A inducer and inhibitor substantiated the major role of CYP3A in the metabolism of abemaciclib. Due to significant changes in abemaciclib and active-metabolite exposure in the presence of strong CYP3A inducers and inhibitors, concomitant use with abemaciclib should be avoided, or abemaciclib dose may require adjustment. Citation Format: Palaniappan Kulanthaivel, Daruka Mahadevan, P. Kellie Turner, Jane Royalty, Wee Teck Ng, Ping Yi, Jessica Rehmel, Kenneth Cassidy, Jill Chappell. Pharmacokinetic drug interactions between abemaciclib and CYP3A inducers and inhibitors. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr CT153.
The drug–drug interaction profile of atorvastatin confirms that disposition is determined by cytochrome P450 (CYP) 3A4 and organic anion transporting polypeptides (OATPs). Drugs that affect gastric emptying, including dulaglutide, also affect atorvastatin pharmacokinetics (PK). Atorvastatin is a carboxylic acid that exists in equilibrium with a lactone form in vivo. The purpose of this work was to assess gastric acid–mediated lactone equilibration of atorvastatin and incorporate this into a physiologically‐based PK (PBPK) model to describe atorvastatin acid, lactone, and their major metabolites. In vitro acid‐to‐lactone conversion was assessed in simulated gastric fluid and included in the model. The PBPK model was verified with in vivo data including CYP3A4 and OATP inhibition studies. Altering the gastric acid–lactone equilibrium reproduced the change in atorvastatin PK observed with dulaglutide. The model emphasizes the need to include gastric acid–lactone conversion and all major atorvastatin‐related species for the prediction of atorvastatin PK.
The International Consortium for Innovation and Quality (IQ) Physiologically Based Pharmacokinetic (PBPK) Modeling Induction Working Group (IWG) conducted a survey across participating companies around general strategies for PBPK modeling of induction, including experience with its utility to address various questions, regulatory interactions, and regulatory acceptance. The results highlight areas where PBPK modeling is used with high confidence and identifies opportunities where confidence is lower and further evaluation is needed. To enhance the survey results, the PBPK‐IWG also collected case studies and analyzed recent literature examples where PBPK models were applied to predict CYP3A induction‐mediated drug‐drug interactions. PBPK modeling of induction has evolved and progressed significantly, proving to have great potential to accelerate drug discovery and development. With the aim of enabling optimal use for new molecular entities that are either substrates and/or inducers of CYP3A, the PBPK‐IWG proposes initial workflows for PBPK application, discusses future trends, and identifies gaps that need to be addressed.
The glycogen synthase kinase-3 inhibitor LY2090314 specifically impaired CYP2B6 activity during in vitro evaluation of cytochrome P450 (P450) enzyme induction in human hepatocytes. CYP2B6 catalytic activity was significantly decreased following 3-day incubation with 0.1-10 mM LY2090314, on average by 64.3% 6 5.0% at 10 mM. These levels of LY2090314 exposure were not cytotoxic to hepatocytes and did not reduce CYP1A2 and CYP3A activities. LY2090314 was not a time-dependent CYP2B6 inhibitor, did not otherwise inhibit enzyme activity at concentrations £10 mM, and was not metabolized by CYP2B6. Thus, mechanism-based inactivation or other direct interaction with the enzyme could not explain the observed reduction in CYP2B6 activity. Instead, LY2090314 significantly reduced CYP2B6 mRNA levels (I max = 61.9% 6 1.4%; IC 50 = 0.049 6 0.043 mM), which were significantly correlated with catalytic activity (r 2 = 0.87, slope = 0.77; I max = 57.0% 6 10.8%, IC 50 = 0.057 6 0.027 mM). Direct inhibition of constitutive androstane receptor by LY2090314 is conceptually consistent with the observed CYP2B6 transcriptional suppression (I max = 100.0% 6 10.8% and 57.1% 6 2.4%; IC 50 = 2.5 6 1.2 and 2.1 6 0.4 mM for isoforms 1 and 3, respectively) and may be sufficiently extensive to overcome the weak but potent activation of pregnane X receptor by £10 mM LY2090314 (19.3% 6 2.2% of maximal rifampin response, apparent EC 50 = 1.2 6 1.1 nM). The clinical relevance of these findings was evaluated through physiologically based pharmacokinetic model simulations. CYP2B6 suppression by LY2090314 is not expected clinically, with a projected <1% decrease in hepatic enzyme activity and <1% decrease in hydroxybupropion exposure following bupropion coadministration. However, simulations showed that observed CYP2B6 suppression could be clinically relevant for a drug with different pharmacokinetic properties from LY2090314.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.