An S-nitroso-N-acetylpenicillamine (SNAP) derivatization approach was used to modify existing free primary amines found in fibrin (a natural protein-based biomaterial) to generate a controlled nitric oxide (NO) releasing scaffold material. The duration of the derivatization reaction affects the NO release kinetics, the induction of controlled NO-release, hydrophobicity, swelling behavior, elastic moduli, rheometric character, and degradation behavior. These properties were quantified to determine changes in fibrin hydrogels following covalent attachment of SNAP. NO-releasing materials exhibited minimal cytotoxicity when cultured with fibroblasts or osteoblasts. Cells maintained viability and proliferative character on derivatized materials as demonstrated by Live/Dead cell staining and counting. In addition, SNAP-derivatized hydrogels exhibited an antimicrobial character indicative of NO-releasing materials. SNAP derivatization of natural polymeric biomaterials containing free primary amines offers a means to generate inducible NO-releasing biomaterials for use as an antimicrobial and regenerative support for tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.