PIEZO1 is a bona fide mammalian mechanically activated channel that has recently been shown to provide instructive cues during neuronal specification, texture sensing, and cell migration where mechanical inputs arise at the interface between the cells and their substrate. Here, we have investigated whether the mechanical properties of the substrate alone can modulate PIEZO1 activity, in response to exogenously applied stimuli, using elastomeric pillar arrays as force transducers. This methodology enables application of mechanical stimuli at cell−substrate contact points by deflecting individual pili. We found that PIEZO1 is more sensitive to substrate deflections with increased spacing between pili (reducing surface roughness) but not on more stiff substrates. Cellular contractility was required for the sensitization of PIEZO1 but was not essential for PIEZO1 activation. Computational modeling suggested that the membrane tension changes generated by pillar deflections were below the membrane tension changes that arise from cellular indentation or high-speed pressure clamp assays. We conclude that the mechanics of the microenvironment can modulate PIEZO1 signaling, highlighting the importance of studying channel activation directly at the cell−substrate interface. We propose that forces arising from actin-mediated contractility and within the lipid bilayer act synergistically to regulate PIEZO1 activation by stimuli applied at contacts between cells and their surroundings.
BackgroundThe zebrafish has been suggested as a model system for studying human diseases that affect nervous system function and motor output. However, few of the ion channels that control neuronal activity in zebrafish have been characterized. Here, we have identified zebrafish orthologs of voltage-dependent Kv3 (KCNC) K+ channels. Kv3 channels have specialized gating properties that facilitate high-frequency, repetitive firing in fast-spiking neurons. Mutations in human Kv3.3 cause spinocerebellar ataxia type 13 (SCA13), an autosomal dominant genetic disease that exists in distinct neurodevelopmental and neurodegenerative forms. To assess the potential usefulness of the zebrafish as a model system for SCA13, we have characterized the functional properties of zebrafish Kv3.3 channels with and without mutations analogous to those that cause SCA13.ResultsThe zebrafish genome (release Zv8) contains six Kv3 family members including two Kv3.1 genes (kcnc1a and kcnc1b), one Kv3.2 gene (kcnc2), two Kv3.3 genes (kcnc3a and kcnc3b), and one Kv3.4 gene (kcnc4). Both Kv3.3 genes are expressed during early development. Zebrafish Kv3.3 channels exhibit strong functional and structural homology with mammalian Kv3.3 channels. Zebrafish Kv3.3 activates over a depolarized voltage range and deactivates rapidly. An amino-terminal extension mediates fast, N-type inactivation. The kcnc3a gene is alternatively spliced, generating variant carboxyl-terminal sequences. The R335H mutation in the S4 transmembrane segment, analogous to the SCA13 mutation R420H, eliminates functional expression. When co-expressed with wild type, R335H subunits suppress Kv3.3 activity by a dominant negative mechanism. The F363L mutation in the S5 transmembrane segment, analogous to the SCA13 mutation F448L, alters channel gating. F363L shifts the voltage range for activation in the hyperpolarized direction and dramatically slows deactivation.ConclusionsThe functional properties of zebrafish Kv3.3 channels are consistent with a role in facilitating fast, repetitive firing of action potentials in neurons. The functional effects of SCA13 mutations are well conserved between human and zebrafish Kv3.3 channels. The high degree of homology between human and zebrafish Kv3.3 channels suggests that the zebrafish will be a useful model system for studying pathogenic mechanisms in SCA13.
Voltage-dependent ion channels are fundamental to the physiology of excitable cells because they underlie the generation and propagation of the action potential and excitation-contraction coupling. To understand how ion channels work, it is important to determine their structures in different conformations in a membrane environment. The validity of the crystal structure for the prokaryotic K ؉ channel, KVAP, has been questioned based on discrepancies with biophysical data from functional eukaryotic channels, underlining the need for independent structural data under native conditions. We investigated the structural organization of two prokaryotic voltage-gated channels, NaChBac and K VAP, in liposomes by using luminescence resonance energy transfer. We describe here a transmembrane packing representation of the voltage sensor and pore domains of the prokaryotic Na channel, NaChBac. We find that NaChBac and K VAP share a common arrangement in which the structures of the Na and K selective pores and voltage-sensor domains are conserved. The packing arrangement of the voltage-sensing region as determined by luminescence resonance energy transfer differs significantly from that of the K VAP crystal structure, but resembles that of the eukaryotic K V1.2 crystal structure. However, the voltage-sensor domain in prokaryotic channels is closer to the pore domain than in the K V1.2 structure. Our results indicate that prokaryotic and eukaryotic channels that share similar functional properties have similar helix arrangements, with differences arising likely from the later introduction of additional structural elements.ion pore ͉ luminescence resonance energy transfer ͉ six transmembrane channels ͉ structure ͉ voltage sensor A common strategy for obtaining high-resolution structural information about eukaryotic membrane proteins is to crystallize homologous prokaryotic proteins that are more readily overexpressed. It is important to evaluate the structural similarity between eukaryotic and prokaryotic proteins and to determine whether the crystal structures of the proteins accurately reflect the functional conformations found in a native environment. Voltage-dependent K ϩ channels provide an excellent test case because x-ray structures and functional data are available for prokaryotic and eukaryotic representatives (1-4). Prokaryotic voltage-gated channels, like their eukaryotic K V channel relatives, are tetrameric proteins. Each subunit contains six transmembrane ␣-helices (S1-S6), intracellular N and C termini, and a pore for selective ion conduction (4) (Fig. 1). The channel contains two main functional domains, the voltage sensor (S1-S4) and the pore (S5-S6), arranged as four voltage sensors (one per subunit) surrounding a single pore. Transitions between different functional states are governed by the transmembrane voltage. In the case of most voltage-dependent channels, when the membrane is depolarized from a resting hyperpolarized state, the voltage sensor undergoes conformational changes that result in pore openin...
Cartilage tissue lines the joints of mammals, helping to lubricate joint movement and distribute mechanical loads. This tissue is comprised of isolated cells known as chondrocytes which are embedded in an extracellular matrix. Chondrocytes produce and maintain the cartilage by sensing and responding to changing mechanical loads. Mechanosensitive ion channels have been implicated in chondrocyte mechanotransduction and recent studies have shown that both PIEZO1 and TRPV4 can be activated by mechanical stimuli in these cells. The 2 channels mediate separate but overlapping mechanoelectrical transduction pathways, PIEZO1 in response to stretch and substrate deflections and TRPV4 in response to substrate deflections alone. These distinct pathways of mechanoelectrical transduction suggest a mechanism by which chondrocytes can distinguish between different stimuli that arise in their complex mechanical environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.