SignificanceSeveral chronic inflammatory conditions have recently been shown to depend on abnormally high activity of the signaling protein stimulator of IFN genes (STING). These conditions include examples from systemic lupus erythematosus, Aicardi–Goutiéres syndrome, and STING-associated vasculopathy with onset in infancy. The involvement of STING in these diseases points to an unmet demand to identify inhibitors of STING signaling, which could form the basis of anti-STING therapeutics. With this report, we identify distinct endogenously formed lipid species as potent inhibitors of STING signaling—and propose that these lipids could have pharmaceutical potential for treatment of STING-dependent inflammatory diseases.
Leukotrienes constitute a group of bioactive lipids generated by the 5-lipoxygenase (5-LO) pathway. An increasing body of evidence supports an acute role for 5-LO products already during the earliest stages of pancreatic, prostate, and colorectal carcinogenesis. Several pieces of experimental data form the basis for this hypothesis and suggest a correlation between 5-LO expression and tumor cell viability. First, several independent studies documented an overexpression of 5-LO in primary tumor cells as well as in established cancer cell lines. Second, addition of 5-LO products to cultured tumor cells also led to increased cell proliferation and activation of anti-apoptotic signaling pathways. 5-LO antisense technology approaches demonstrated impaired tumor cell growth due to reduction of 5-LO expression. Lastly, pharmacological inhibition of 5-LO potently suppressed tumor cell growth by inducing cell cycle arrest and triggering cell death via the intrinsic apoptotic pathway. However, the documented strong cytotoxic off-target effects of 5-LO inhibitors, in combination with the relatively high concentrations of 5-LO products needed to achieve mitogenic effects in cell culture assays, raise concern over the assignment of the cause, and question the relationship between 5-LO products and tumorigenesis.
Aims: The reaction of nitric oxide and nitrite-derived species with polyunsaturated fatty acids yields electrophilic fatty acid nitroalkene derivatives (NO 2 -FA), which display anti-inflammatory properties. Given that the 5-lipoxygenase (5-LO, ALOX5) possesses critical nucleophilic amino acids, which are potentially sensitive to electrophilic modifications, we determined the consequences of NO 2 -FA on 5-LO activity in vitro and on 5-LOmediated inflammation in vivo. Results: Stimulation of human polymorphonuclear leukocytes (PMNL) with nitro-oleic (NO 2 -OA) or nitro-linoleic acid (NO 2 -LA) (but not the parent lipids) resulted in the concentrationdependent and irreversible inhibition of 5-LO activity. Similar effects were observed in cell lysates and using the recombinant human protein, indicating a direct reaction with 5-LO. NO 2 -FAs did not affect the activity of the platelet-type 12-LO (ALOX12) or 15-LO-1 (ALOX15) in intact cells or the recombinant protein. The NO 2 -FAinduced inhibition of 5-LO was attributed to the alkylation of Cys418, and the exchange of Cys418 to serine rendered 5-LO insensitive to NO 2 -FA. In vivo, the systemic administration of NO 2 -OA to mice decreased neutrophil and monocyte mobilization in response to lipopolysaccharide (LPS), attenuated the formation of the 5-LO product 5-hydroxyeicosatetraenoic acid (5-HETE), and inhibited lung injury. The administration of NO 2 -OA to 5-LO knockout mice had no effect on LPS-induced neutrophil or monocyte mobilization as well as on lung injury. Innovation: Prophylactic administration of NO 2 -OA to septic mice inhibits inflammation and promotes its resolution by interfering in 5-LO-mediated inflammatory processes. Conclusion: NO 2 -FAs directly and irreversibly inhibit 5-LO and attenuate downstream acute inflammatory responses. Antioxid. Redox Signal. 20, 2667Signal. 20, -2680
Nonsteroidal anti-inflammatory drugs such as sulindac inhibit Wnt signaling, which is critical to maintain cancer stem cell-like cells (CSC), but they also suppress the activity of 5-lipoxygenase (5-LO) at clinically feasible concentrations. Recently, 5-LO was shown to be critical to maintain CSC in a model of chronic myeloid leukemia. For these reasons, we hypothesized that 5-LO may offer a therapeutic target to improve the management of acute myeloid leukemia (AML), an aggressive disease driven by CSCs. Pharmacologic and genetic approaches were used to evaluate the effects of 5-LO blockade in a PML/RARa-positive model of AML. As CSC models, we used Sca-1 þ /lin À murine hematopoietic stem and progenitor cells (HSPC), which were retrovirally transduced with PML/RARa. We found that pharmacologic inhibition of 5-LO interfered strongly with the aberrant stem cell capacity of PML/RARa-expressing HSPCs. Through small-molecule inhibitor studies and genetic disruption of 5-LO, we also found that Wnt and CSC inhibition is mediated by the enzymatically inactive form of 5-LO, which hinders nuclear translocation of b-catenin. Overall, our findings revealed that 5-LO inhibitors also inhibit Wnt signaling, not due to the interruption of 5-LO-mediated lipid signaling but rather due to the generation of a catalytically inactive form of 5-LO, which assumes a new function. Given the evidence that CSCs mediate AML relapse after remission, eradication of CSCs in this setting by 5-LO inhibition may offer a new clinical approach for immediate evaluation in patients with AML. Cancer Res; 74(18); 5244-55. Ó2014 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.